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2.1 The Strategic and Extensive Forms of a Game

If half of strategic thinking is predicting what the other player will do, the other half is
figuring out what he knows. Most of the games in Chapter 1 assumed that the moves were
simultaneous, so the players did not have a chance to learn each other’s private information
by observing each other. Information becomes central as soon as players move in sequence.
The important difference, in fact, between simultaneous-move games and sequential-move
games is that in sequential-move games the second player acquires the information on how
the first player moved before he must make his own decision.

Section 2.1 shows how to use the strategic form and the extensive form to describe
games with sequential moves. Section 2.2 shows how the extensive form, or game tree,
can be used to describe the information available to a player at each point in the game.
Section 2.3 classifies games based on the information structure. Section 2.4 shows how
to redraw games with incomplete information so that they can be analyzed using the
Harsanyi transformation, and derives Bayes’s Rule for combining a player’s prior beliefs
with information which he acquires in the course of the game. Section 2.5 concludes the
chapter with the Png Settlement Game, an example of a moderately complex sequential-
move game.

The Strategic Form and the Outcome Matrix

Games with moves in sequence require more care in presentation than single- move games.
In Section 1.4 we used the 2-by-2 form, which for the game Ranked Coordination is shown
in Table 1.

Table 1: Ranked Coordination

Jones
Large Small

Large 2,2 ← −1,−1
Smith ↑ ↓

Small −1,−1 → 1,1

Payoffs to: (Smith, Jones). Arrows show how a player can increase his payoff.

Because strategies are the same as actions in Ranked Coordination and the outcomes
are simple, the 2-by-2 form in Table 1 accomplishes two things: it relates strategy profiles
to payoffs, and action profiles to outcomes. These two mappings are called the strategic
form and the outcome matrix, and in more complicated games they are distinct from each
other. The strategic form shows what payoffs result from each possible strategy profile,
while the outcome matrix shows what outcome results from each possible action profile.
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The definitions below use n to denote the number of players, k the number of variables in
the outcome vector, p the number of strategy profiles, and q the number of action profiles.

The strategic form (or normal form) consists of
1 All possible strategy profiles s1, s2, . . . , sp.
2 Payoff functions mapping si onto the payoff n-vector πi, (i = 1, 2, . . . , p).

The outcome matrix consists of
1 All possible action profiles a1, a2, . . . , aq.
2 Outcome functions mapping ai onto the outcome k-vector zi, (i = 1, 2, . . . , q).

Consider the following game based on Ranked Coordination, which we will call Follow-
the-Leader I since we will create several variants of the game. The difference from Ranked
Coordination is that Smith moves first, committing himself to a certain disk size no matter
what size Jones chooses. The new game has an outcome matrix identical to Ranked Coor-
dination, but its strategic form is different because Jones’s strategies are no longer single
actions. Jones’s strategy set has four elements,


(If Smith chose Large, choose Large; if Smith chose Small, choose Large),
(If Smith chose Large, choose Large; if Smith chose Small, choose Small),
(If Smith chose Large, choose Small; if Smith chose Small, choose Large),
(If Smith chose Large, choose Small; if Smith chose Small, choose Small)


which we will abbreviate as


(L|L, L|S),
(L|L, S|S),
(S|L, L|S),
(S|L, S|S)


Follow-the-Leader I illustrates how adding a little complexity can make the strategic

form too obscure to be very useful. The strategic form is shown in Table 2, with equilibria
boldfaced and labelled E1, E2, and E3.

Table 2: Follow-the-Leader I

Jones
J1 J2 J3 J4

L|L, L|S L|L, S|S S|L, L|S S|L, S|S

S1 : Large 2 , 2 (E1) 2 , 2 (E2) −1, −1 −1,−1
Smith

S2 : Small −1,−1 1, 1 −1,−1 1 , 1 (E3)
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Payoffs to: (Smith, Jones). Best-response payoffs are boxed (with dashes, if weak)

Equilibrium Strategies Outcome
E1 {Large, (L|L, L|S)} Both pick Large
E2 {Large, (L|L, S|S)} Both pick Large
E3 {Small,(S|L, S|S)} Both pick Small

Consider why E1, E2, and E3 are Nash equilibria. In Equilibrium E1, Jones will
respond with Large regardless of what Smith does, so Smith quite happily chooses Large.
Jones would be irrational to choose Large if Smith chose Small first, but that event never
happens in equilibrium. In Equilibrium E2, Jones will choose whatever Smith chose, so
Smith chooses Large to make the payoff 2 instead of 1. In Equilibrium E3, Smith chooses
Small because he knows that Jones will respond with Small whatever he does, and Jones
is willing to respond with Small because Smith chooses Small in equilibrium. Equilibria E1

and E3 are not completely sensible, because the choices Large|Small (as specified in E1)
and Small|Large (as specified in E3) would reduce Jones’s payoff if the game ever reached
a point where he had to actually play them. Except for a little discussion in connection
with Figure 1, however, we will defer to Chapter 4 the discussion of how to redefine the
equilibrium concept to rule them out.

The Order of Play

The “normal form” is rarely used in modelling games of any complexity. Already, in Section
1.1, we have seen an easier way to model a sequential game: the order of play. For it Follow
the Leader I, this would be:

1 Smith chooses his disk size to be either Large or Small.
2 Jones chooses his disk size to be either Large or Small.

The reason I have retained the concept of the normal form in this edition is that it
reinforces the idea of laying out all the possible strategies and comparing their payoffs. The
order of play, however, gives us a better way to describe games, as I will explain next.

The Extensive Form and the Game Tree

Two other ways to describe a game are the extensive form and the game tree. First we
need to define their building blocks. As you read the definitions, you may wish to refer to
Figure 1 as an example.

A node is a point in the game at which some player or Nature takes an action, or the
game ends.

A successor to node X is a node that may occur later in the game if X has been reached.

A predecessor to node X is a node that must be reached before X can be reached.

A starting node is a node with no predecessors.
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An end node or end point is a node with no successors.

A branch is one action in a player’s action set at a particular node.

A path is a sequence of nodes and branches leading from the starting node to an end node.

These concepts can be used to define the extensive form and the game tree.

The extensive form is a description of a game consisting of
1 A configuration of nodes and branches running without any closed loops from a single
starting node to its end nodes.
2 An indication of which node belongs to which player.
3 The probabilities that Nature uses to choose different branches at its nodes.
4 The information sets into which each player’s nodes are divided.
5 The payoffs for each player at each end node.

The game tree is the same as the extensive form except that (5) is replaced with
5′ The outcomes at each end node.

“Game tree” is a looser term than “extensive form.” If the outcome is defined as the
payoff profile, one payoff for each player, then the extensive form is the same as the game
tree.

The extensive form for Follow-the-Leader I is shown in Figure 1. We can see why
Equilibria E1 and E3 of Table 2 are unsatisfactory even though they are Nash equilibria.
If the game actually reached nodes J1 or J2, Jones would have dominant actions, Small at
J1 and Large at J2, but E1 and E3 specify other actions at those nodes. In Chapter 4 we
will return to this game and show how the Nash concept can be refined to make E2 the
only equilibrium.
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Figure 1: Follow-the-Leader I in Extensive Form

The extensive form for Ranked Coordination, shown in Figure 2, adds dotted lines to
the extensive form for Follow-the-Leader I. Each player makes a single decision between
two actions. The moves are simultaneous, which we show by letting Smith move first, but
not letting Jones know how he moved. The dotted line shows that Jones’s knowledge stays
the same after Smith moves. All Jones knows is that the game has reached some node
within the information set defined by the dotted line; he does not know the exact node
reached.
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Figure 2: Ranked Coordination in Extensive Form

The Time Line

The time line, a line showing the order of events, is another way to describe games.
Time lines are particularly useful for games with continuous strategies, exogenous arrival
of information, and multiple periods, games that are frequently used in the accounting and
finance literature. A typical time line is shown in Figure 3a, which represents a game that
will be described in Section 11.5.

Figure 3: The Time Line for Stock Underpricing: (a) A Good Time Line; (b)
A Bad Time Line
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The time line illustrates the order of actions and events, not necessarily the passage
of time. Certain events occur in an instant, others over an interval. In Figure 3a, events
2 and 3 occur immediately after event 1, but events 4 and 5 might occur ten years later.
We sometimes refer to the sequence in which decisions are made as decision time and
the interval over which physical actions are taken as real time. A major difference is
that players put higher value on payments received earlier in real time because of time
preference (on which see the appendix).

A common and bad modelling habit is to restrict the use of the dates on the time line
to separating events in real time. Events 1 and 2 in Figure 2.3a are not separated by real
time: as soon as the entrepreneur learns the project’s value, he offers to sell stock. The
modeller might foolishly decide to depict his model by a picture like Figure 3b in which
both events happen at date 1. Figure 3b is badly drawn, because readers might wonder
which event occurs first or whether they occur simultaneously. In more than one seminar,
20 minutes of heated and confusing debate could have been avoided by 10 seconds care to
delineate the order of events.

2.2: Information Sets

A game’s information structure, like the order of its moves, is often obscured in the strategic
form. During the Watergate affair, Senator Baker became famous for the question “How
much did the President know, and when did he know it?”. In games, as in scandals, these
are the big questions. To make this precise, however, requires technical definitions so that
one can describe who knows what, and when. This is done using the “information set,” the
set of nodes a player thinks the game might have reached, as the basic unit of knowledge.

Player i’s information set ωi at any particular point of the game is the set of different
nodes in the game tree that he knows might be the actual node, but between which he cannot
distinguish by direct observation.

As defined here, the information set for player i is a set of nodes belonging to one
player but on different paths. This captures the idea that player i knows whose turn it is to
move, but not the exact location the game has reached in the game tree. Historically, player
i’s information set has been defined to include only nodes at which player i moves, which
is appropriate for single-person decision theory, but leaves a player’s knowledge undefined
for most of any game with two or more players. The broader definition allows comparison
of information across players, which under the older definition is a comparison of apples
and oranges.

In the game in Figure 4, Smith moves at node S1 in 1984 and Jones moves at nodes
J1, J2, J3, and J4 in 1985 or 1986. Smith knows his own move, but Jones can tell only
whether Smith has chosen the moves which lead to J1, J2, or “other”; he cannot distinguish
between J3 and J4. If Smith has chosen the move leading to J3, his own information set is
simply {J3 }, but Jones’s information set is {J3, J4}.

One way to show information sets on a diagram is to put dashed lines around or
between nodes in the same information set. The resulting diagrams can be very cluttered,
so it is often more convenient to draw dashed lines around the information set of just the
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player making the move at a node. The dashed lines in Figure 4 show that J3 and J4 are
in the same information set for Jones, even though they are in different information sets
for Smith. An expressive synonym for information set which is based on the appearance of
these diagrams is “cloud”: one would say that nodes J3 and J4 are in the same cloud, so
that while Jones can tell that the game has reached that cloud, he cannot pierce the fog to
tell exactly which node has been reached.

Figure 4: Information Sets and Information Partitions.

One node cannot belong to two different information sets of a single player. If node
J3 belonged to information sets {J2,J3} and {J3,J4} (unlike in Figure 4), then if the game
reached J3, Jones would not know whether he was at a node in {J2, J3} or a node in {J3,
J4}— which would imply that they were really the same information set.

If the nodes in one of Jones’s information sets are nodes at which he moves, his action
set must be the same at each node, because he knows his own action set (though his actions
might differ later on in the game depending on whether he advances from J3 or J4). Jones
has the same action sets at nodes J3 and J4, because if he had some different action available
at J3 he would know he was there and his information set would reduce to just {J3}. For
the same reason, nodes J1 and J2 could not be put in the same information set; Jones must
know whether he has three or four moves in his action set. We also require end nodes to
be in different information sets for a player if they yield him different payoffs.
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With these exceptions, we do not include in the information structure of the game
any information acquired by a player’s rational deductions. In Figure 4, for example, it
seems clear that Smith would choose Bottom, because that is a dominant strategy — his
payoff is 8 instead of the 4 from Lower, regardless of what Jones does. Jones should be
able to deduce this, but even though this is an uncontroversial deduction, it is none the less
a deduction, not an observation, so the game tree does not split J3 and J4 into separate
information sets.

Information sets also show the effects of unobserved moves by Nature. In Figure 4, if
the initial move had been made by Nature instead of by Smith, Jones’s information sets
would be depicted the same way.

Player i’s information partition is a collection of his information sets such that
1 Each path is represented by one node in a single information set in the partition, and
2 The predecessors of all nodes in a single information set are in one information set.

The information partition represents the different positions that the player knows he
will be able to distinguish from each other at a given stage of the game, carving up the set
of all possible nodes into the subsets called information sets. One of Smith’s information
partitions is ({J1},{J2},{J3},{J4}). The definition rules out information set {S1} being
in that partition, because the path going through S1 and J1 would be represented by two
nodes. Instead, {S1} is a separate information partition, all by itself. The information
partition refers to a stage of the game, not chronological time. The information partition
({J1},{J2},{J3,J4}) includes nodes in both 1985 and 1986, but they are all immediate
successors of node S1.

Jones has the information partition ({J1},{J2},{J3,J4}). There are two ways to see
that his information is worse than Smith’s. First is the fact that one of his information
sets, {J3,J4}, contains more elements than Smith’s, and second, that one of his information
partitions, ({J1},{J2},{J3,J4}), contains fewer elements.

Table 3 shows a number of different information partitions for this game. Partition I is
Smith’s partition and partition II is Jones’s partition. We say that partition II is coarser,
and partition I is finer. A profile of two or more of the information sets in a partition,
which reduces the number of information sets and increases the numbers of nodes in one
or more of them is a coarsening. A splitting of one or more of the information sets in a
partition, which increases the number of information sets and reduces the number of nodes
in one or more of them, is a refinement. Partition II is thus a coarsening of partition I, and
partition I is a refinement of partition II. The ultimate refinement is for each information
set to be a singleton, containing one node, as in the case of partition I. As in bridge,
having a singleton can either help or hurt a player. The ultimate coarsening is for a player
not to be able to distinguish between any of the nodes, which is partition III in Table 3.1

A finer information partition is the formal definition for “better information.” Not
all information partitions are refinements or coarsenings of each other, however, so not all
information partitions can be ranked by the quality of their information. In particular,

1Note, however, that partitions III and IV are not really allowed in this game, because Jones could tell
the node from the actions available to him, as explained earlier.
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just because one information partition contains more information sets does not mean it is
a refinement of another information partition. Consider partitions II and IV in Figure 3.
Partition II separates the nodes into three information sets, while partition IV separates
them into just two information sets. Partition IV is not a coarsening of partition II,
however, because it cannot be reached by combining information sets from partition II,
and one cannot say that a player with partition IV has worse information. If the node
reached is J1, partition II gives more precise information, but if the node reached is J4,
partition IV gives more precise information.

Table 3: Information Partitions

Information quality is defined independently of its utility to the player: it is possible
for a player’s information to improve and for his equilibrium payoff to fall as a result. Game
theory has many paradoxical models in which a player prefers having worse information,
not a result of wishful thinking, escapism, or blissful ignorance, but of cold rationality.
Coarse information can have a number of advantages. (a) It may permit a player to engage
in trade because other players do not fear his superior information. (b) It may give a player
a stronger strategic position because he usually has a strong position and is better off not
knowing that in a particular realization of the game his position is weak. Or, (c) as in the
more traditional economics of uncertainty, poor information may permit players to insure
each other.

I will wait till later chapters to discuss points (a) and (b), the strategic advantages
of poor information (go to Section 6.3 on entry deterrence and Chapter 9 on used cars if
you feel impatient), but it is worth pausing here to think about point (c), the insurance
advantage. Consider the following example, which will illustrate that even when informa-
tion is symmetric and behavior is nonstrategic, better information in the sense of a finer
information partition, can actually reduce everybody’s utility.

Suppose Smith and Jones, both risk averse, work for the same employer, and both
know that one of them chosen randomly will be fired at the end of the year while the other
will be promoted. The one who is fired will end with a wealth of 0 and the one who is
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promoted will end with 100. The two workers will agree to insure each other by pooling
their wealth: they will agree that whoever is promoted will pay 50 to whoever is fired. Each
would then end up with a guaranteed utility of U(50). If a helpful outsider offers to tell
them who will be fired before they make their insurance agreement, they should cover their
ears and refuse to listen. Such a refinement of their information would make both worse
off, in expectation, because it would wreck the possibility of the two of them agreeing on
an insurance arrangement. It would wreck the possibility because if they knew who would
be promoted, the lucky worker would refuse to pool with the unlucky one. Each worker’s
expected utility with no insurance but with someone telling them what will happen is .5
*U(0) + .5* U(100), which is less than 1.0*U(50) if they are risk averse. They would prefer
not to know, because better information would reduce the expected utility of both of them.

Common Knowledge

We have been implicitly assuming that the players know what the game tree looks like.
In fact, we have assumed that the players also know that the other players know what
the game tree looks like. The term “common knowledge” is used to avoid spelling out the
infinite recursion to which this leads.

Information is common knowledge if it is known to all the players, if each player knows
that all the players know it, if each player knows that all the players know that all the
players know it, and so forth ad infinitum.

Because of this recursion (the importance of which will be seen in Section 6.3), the
assumption of common knowledge is stronger than the assumption that players have the
same beliefs about where they are in the game tree. Hirshleifer & Riley (1992, p. 169) use
the term concordant beliefs to describe a situation where players share the same belief
about the probabilities that Nature has chosen different states of the world, but where they
do not necessarily know they share the same beliefs. (Brandenburger [1992] uses the term
mutual knowledge for the same idea.)

For clarity, models are set up so that information partitions are common knowledge.
Every player knows how precise the other players’ information is, however ignorant he
himself may be as to which node the game has reached. Modelled this way, the information
partitions are independent of the equilibrium concept. Making the information partitions
common knowledge is important for clear modelling, and restricts the kinds of games that
can be modelled less than one might think. This will be illustrated in Section 2.4 when the
assumption will be imposed on a situation in which one player does not even know which
of three games he is playing.

2.3 Perfect, Certain, Symmetric, and Complete Information

We categorize the information structure of a game in four different ways, so a particular
game might have perfect, complete, certain, and symmetric information. The categories
are summarized in Table 4.

52



Information category Meaning

Perfect Each information set is a singleton

Certain Nature does not move after any player moves

Symmetric No player has information different from other
players when he moves, or at the end nodes

Complete Nature does not move first, or her initial move
is observed by every player

Table 4: Information Categories

The first category divides games into those with perfect and those with imperfect
information.

In a game of perfect information each information set is a singleton. Otherwise the
game is one of imperfect information.

The strongest informational requirements are met by a game of perfect information,
because in such a game each player always knows exactly where he is in the game tree. No
moves are simultaneous, and all players observe Nature’s moves. Ranked Coordination is
a game of imperfect information because of its simultaneous moves, but Follow-the-Leader
I is a game of perfect information. Any game of incomplete or asymmetric information is
also a game of imperfect information.

A game of certainty has no moves by Nature after any player moves. Otherwise the game
is one of uncertainty.

The moves by Nature in a game of uncertainty may or may not be revealed to the
players immediately. A game of certainty can be a game of perfect information if it has no
simultaneous moves. The notion “game of uncertainty” is new with this book, but I doubt
it would surprise anyone. The only quirk in the definition is that it allows an initial move
by Nature in a game of certainty, because in a game of incomplete information Nature
moves first to select a player’s “type.” Most modellers do not think of this situation as
uncertainty.

We have already talked about information in Ranked Coordination, a game of imper-
fect, complete, and symmetric information with certainty. The Prisoner’s Dilemma falls
into the same categories. Follow-the-Leader I, which does not have simultaneous moves, is
a game of perfect, complete, and symmetric information with certainty.

We can easily modify Follow-the-Leader I to add uncertainty, creating the game
Follow-the-Leader II (Figure 5). Imagine that if both players pick Large for their disks, the
market yields either zero profits or very high profits, depending on the state of demand,
but demand would not affect the payoffs in any other strategy profile. We can quantify
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this by saying that if (Large, Large) is picked, the payoffs are (10,10) with probability 0.2,
and (0,0) with probability 0.8, as shown in Figure 5.

Figure 5: Follow-the-Leader II

When players face uncertainty, we need to specify how they evaluate their uncertain
future payoffs. The obvious way to model their behavior is to say that the players maximize
the expected values of their utilities. Players who behave in this way are said to have von
Neumann-Morgenstern utility functions, a name chosen to underscore von Neumann
& Morgenstern’s (1944) development of a rigorous justification of such behavior.

Maximizing their expected utilities, the players would behave exactly the same as
in Follow-the-Leader I. Often, a game of uncertainty can be transformed into a game of
certainty without changing the equilibrium, by eliminating Nature’s moves and changing
the payoffs to their expected values based on the probabilities of Nature’s moves. Here
we could eliminate Nature’s move and replace the payoffs 10 and 0 with the single payoff
2 (= 0.2[10] + 0.8[0]). This cannot be done, however, if the actions available to a player
depend on Nature’s moves, or if information about Nature’s move is asymmetric.

The players in Figure 5 might be either risk averse or risk neutral. Risk aversion is
implicitly incorporated in the payoffs because they are in units of utility, not dollars. When
players maximize their expected utility, they are not necessarily maximizing their expected
dollars. Moreover, the players can differ in how they map money to utility. It could be
that (0,0) represents ($0, $5,000), (10,10) represents ($100,000, $100,000), and (2,2), the
expected utility, could here represent a non-risky ($3,000, $7,000).

In a game of symmetric information, a player’s information set at
1 any node where he chooses an action, or
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2 an end node
contains at least the same elements as the information sets of every other player. Otherwise
the game is one of asymmetric information.

In a game of asymmetric information, the information sets of players differ in ways
relevant to their behavior, or differ at the end of the game. Such games have imperfect
information, since information sets which differ across players cannot be singletons. The
definition of “asymmetric information” which is used in the present book for the first time is
intended for capturing a vague meaning commonly used today. The essence of asymmetric
information is that some player has useful private information: an information partition
that is different and not worse than another player’s.

A game of symmetric information can have moves by Nature or simultaneous moves,
but no player ever has an informational advantage. The one point at which information
may differ is when the player not moving has superior information because he knows what
his own move was; for example, if the two players move simultaneously. Such information
does not help the informed player, since by definition it cannot affect his move.

A game has asymmetric information if information sets differ at the end of the game
because we conventionally think of such games as ones in which information differs, even
though no player takes an action after the end nodes. The principal-agent model of Chapter
7 is an example. The principal moves first, then the agent, and finally Nature. The agent
observes the agent’s move, but the principal does not, although he may be able to deduce
it. This would be a game of symmetric information except for the fact that information
continues to differ at the end nodes.

In a game of incomplete information, Nature moves first and is unobserved by at least
one of the players. Otherwise the game is one of complete information.

A game with incomplete information also has imperfect information, because some
player’s information set includes more than one node. Two kinds of games have complete
but imperfect information: games with simultaneous moves, and games where, late in the
game, Nature makes moves not immediately revealed to all players.

Many games of incomplete information are games of asymmetric information, but the
two concepts are not equivalent. If there is no initial move by Nature, but Smith takes
a move unobserved by Jones, and Smith moves again later in the game, the game has
asymmetric but complete information. The principal-agent games of Chapter 7 are again
examples: the agent knows how hard he worked, but his principal never learns, not even at
the end nodes. A game can also have incomplete but symmetric information: let Nature,
unobserved by either player, move first and choose the payoffs for (Confess, Confess) in
the Prisoner’s Dilemma to be either (−6,−6) or (−100,−100).

Harris & Holmstrom (1982) have a more interesting example of incomplete but sym-
metric information: Nature assigns different abilities to workers, but when workers are
young their ability is known neither to employers nor to themselves. As time passes, the
abilities become common knowledge, and if workers are risk averse and employers are risk
neutral, the model shows that equilibrium wages are constant or rising over time.
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Poker Examples of Information Classification

In the game of poker, the players make bets on who will have the best hand of cards at the
end, where a ranking of hands has been pre-established. How would the following rules for
behavior before betting be classified? (Answers are in note N2.3)

1. All cards are dealt face up.

2. All cards are dealt face down, and a player cannot look even at his own cards before
he bets.

3. All cards are dealt face down, and a player can look at his own cards.

4. All cards are dealt face up, but each player then scoops up his hand and secretly
discards one card.

5. All cards are dealt face up, the players bet, and then each player receives one more
card face up.

6. All cards are dealt face down, but then each player scoops up his cards without
looking at them and holds them against his forehead so all the other players can see
them (Indian poker).

2.4 The Harsanyi Transformation and Bayesian Games

The Harsanyi Transformation: Follow-the-Leader III

The term “incomplete information” is used in two quite different senses in the literature,
usually without explicit definition. The definition in Section 2.3 is what economists com-
monly use, but if asked to define the term, they might come up with the following, older,
definition.

Old definition
In a game of complete information, all players know the rules of the game. Otherwise
the game is one of incomplete information.

The old definition is not meaningful, since the game itself is ill defined if it does
not specify exactly what the players’ information sets are. Until 1967, game theorists
spoke of games of incomplete information to say that they could not be analyzed. Then
John Harsanyi pointed out that any game that had incomplete information under the old
definition could be remodelled as a game of complete but imperfect information without
changing its essentials, simply by adding an initial move in which Nature chooses between
different sets of rules. In the transformed game, all players know the new meta-rules,
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including the fact that Nature has made an initial move unobserved by them. Harsanyi’s
suggestion trivialized the definition of incomplete information, and people began using
the term to refer to the transformed game instead. Under the old definition, a game of
incomplete information was transformed into a game of complete information. Under the
new definition, the original game is ill defined, and the transformed version is a game of
incomplete information.

Follow-the-Leader III serves to illustrate the Harsanyi transformation. Suppose that
Jones does not know the game’s payoffs precisely. He does have some idea of the payoffs,
and we represent his beliefs by a subjective probability distribution. He places a 70 percent
probability on the game being game (A) in Figure 6 (which is the same as Follow-the-
Leader I), a 10 percent chance on game (B), and a 20 percent on game (C). In reality the
game has a particular set of payoffs, and Smith knows what they are. This is a game of
incomplete information (Jones does not know the payoffs), asymmetric information (when
Smith moves, Smith knows something Jones does not), and certainty (Nature does not
move after the players do.)
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Figure 6: Follow-the-Leader III: Original

The game cannot be analyzed in the form shown in Figure 6. The natural way to
approach such a game is to use the Harsanyi transformation. We can remodel the game
to look like Figure 7, in which Nature makes the first move and chooses the payoffs of
game (A), (B), or (C), in accordance with Jones’s subjective probabilities. Smith observes
Nature’s move, but Jones does not. Figure 7 depicts the same game as Figure 6, but now
we can analyze it. Both Smith and Jones know the rules of the game, and the difference
between them is that Smith has observed Nature’s move. Whether Nature actually makes
the moves with the indicated probabilities or Jones just imagines them is irrelevant, so long
as Jones’s initial beliefs or fantasies are common knowledge.

Figure 7: Follow-the-Leader III: After the Harsanyi Transformation

Often what Nature chooses at the start of a game is the strategy set, information
partition, and payoff function of one of the players. We say that the player can be any
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of several “types,” a term to which we will return in later chapters. When Nature moves,
especially if she affects the strategy sets and payoffs of both players, it is often said that
Nature has chosen a particular “state of the world.” In Figure 7 Nature chooses the state
of the world to be (A), (B), or (C).

A player’s type is the strategy set, information partition, and payoff function which Nature
chooses for him at the start of a game of incomplete information.

A state of the world is a move by Nature.

As I have already said, it is good modelling practice to assume that the structure of the
game is common knowledge, so that though Nature’s choice of Smith’s type may really just
represent Jones’s opinions about Smith’s possible type, Smith knows what Jones’s possible
opinions are and Jones knows that they are just opinions. The players may have different
beliefs, but that is modelled as the effect of their observing different moves by Nature. All
players begin the game with the same beliefs about the probabilities of the moves Nature
will make— the same priors, to use a term that will shortly be introduced. This modelling
assumption is known as the Harsanyi doctrine. If the modeller is following it, his model
can never reach a situation where two players possess exactly the same information but
disagree as to the probability of some past or future move of Nature. A model cannot, for
example, begin by saying that Germany believes its probability of winning a war against
France is 0.8 and France believes it is 0.4, so they are both willing to go to war. Rather, he
must assume that beliefs begin the same but diverge because of private information. Both
players initially think that the probability of a German victory is 0.4 but that if General
Schmidt is a genius the probability rises to 0.8, and then Germany discovers that Schmidt
is indeed a genius. If it is France that has the initiative to declare war, France’s mistaken
beliefs may lead to a conflict that would be avoidable if Germany could credibly reveal its
private information about Schmidt’s genius.

An implication of the Harsanyi doctrine is that players are at least slightly open-
minded about their opinions. If Germany indicates that it is willing to go to war, France
must consider the possibility that Germany has discovered Schmidt’s genius and update
the probability that Germany will win (keeping in mind that Germany might be bluffing).
Our next topic is how a player updates his beliefs upon receiving new information, whether
it be by direct observation of Nature or by observing the moves of another player who
might be better informed.

Updating Beliefs with Bayes’s Rule

When we classify a game’s information structure we do not try to decide what a player
can deduce from the other players’ moves. Player Jones might deduce, upon seeing Smith
choose Large, that Nature has chosen state (A), but we do not draw Jones’s information
set in Figure 7 to take this into account. In drawing the game tree we want to illustrate
only the exogenous elements of the game, uncontaminated by the equilibrium concept. But
to find the equilibrium we do need to think about how beliefs change over the course of the
game.

One part of the rules of the game is the collection of prior beliefs (or priors) held
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by the different players, beliefs that they update in the course of the game. A player holds
prior beliefs concerning the types of the other players, and as he sees them take actions he
updates his beliefs under the assumption that they are following equilibrium behavior.

The term bayesian equilibrium is used to refer to a Nash equilibrium in which
players update their beliefs according to Bayes’s Rule. Since Bayes’s Rule is the natural
and standard way to handle imperfect information, the adjective, “bayesian,” is really
optional. But the two-step procedure of checking a Nash equilibrium has now become a
three-step procedure:

1 Propose a strategy profile.
2 See what beliefs the strategy profile generates when players update their beliefs in response
to each others’ moves.
3 Check that given those beliefs together with the strategies of the other players each player
is choosing a best response for himself.

The rules of the game specify each player’s initial beliefs, and Bayes’s Rule is the
rational way to update beliefs. Suppose, for example, that Jones starts with a particular
prior belief, Prob(Nature chose (A)). In Follow-the- Leader III, this equals 0.7. He then
observes Smith’s move — Large, perhaps. Seeing Large should make Jones update to
the posterior belief, Prob(Nature chose (A))|Smith chose Large), where the symbol “|”
denotes “conditional upon” or “given that.”

Bayes’s Rule shows how to revise the prior belief in the light of new information
such as Smith’s move. It uses two pieces of information, the likelihood of seeing Smith
choose Large given that Nature chose state of the world (A), Prob(Large|(A)), and the
likelihood of seeing Smith choose Large given that Nature did not choose state (A),
Prob(Large|(B) or (C)). From these numbers, Jones can calculate Prob(Smith chooses Large),
the marginal likelihood of seeing Large as the result of one or another of the possible
states of the world that Nature might choose.

Prob(Smith chooses Large) = Prob(Large|A)Prob(A) + Prob(Large|B)Prob(B)
+Prob(Large|C)Prob(C).

(1)

To find his posterior, Prob(Nature chose (A))|Smith chose Large), Jones uses the
likelihood and his priors. The joint probability of both seeing Smith choose Large and
Nature having chosen (A) is

Prob(Large, A) = Prob(A|Large)Prob(Large) = Prob(Large|A)Prob(A). (2)

Since what Jones is trying to calculate is Prob(A|Large), rewrite the last part of (2)
as follows:

Prob(A|Large) =
Prob(Large|A)Prob(A)

Prob(Large)
. (3)

Jones needs to calculate his new belief — his posterior — using Prob(Large), which he cal-
culates from his original knowledge using (1). Substituting the expression for Prob(Large)
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from (1) into equation (3) gives the final result, a version of Bayes’s Rule.

Prob(A|Large) =
Prob(Large|A)Prob(A)

Prob(Large|A)Prob(A) + Prob(Large|B)Prob(B) + Prob(Large|C)Prob(C)
.

(4)

More generally, for Nature’s move x and the observed data,

Prob(x|data) =
Prob(data|x)Prob(x)

Prob(data)
(5)

Equation (6) is a verbal form of Bayes’s Rule, which is useful for remembering the
terminology,2 summarized in Table 5.

(Posterior for Nature′s Move) =
(Likelihood of P layer′s Move) · (Prior for Nature′s Move)

(Marginal likelihood of P layer′s Move)
.

(6)
Bayes’s Rule is not purely mechanical. It is the only way to rationally update beliefs. The
derivation is worth understanding, because Bayes’s Rule is hard to memorize but easy to
rederive.

Table 5: Bayesian Terminology

Name Meaning

Likelihood Prob(data|event)
Marginal likelihood Prob(data)
Conditional Likelihood Prob(data X|data Y, event)
Prior Prob(event)
Posterior Prob(event|data)

Updating Beliefs in Follow-the-Leader III

Let us now return to the numbers in Follow-the-Leader III to use the belief-updating rule
that was just derived. Jones has a prior belief that the probability of event “Nature picks
state (A)” is 0.7 and he needs to update that belief on seeing the data “Smith picks Large”.
His prior is Prob(A) = 0.7, and we wish to calculate Prob(A|Large).

To use Bayes’s Rule from equation (4), we need the values of Prob(Large|A), Prob(Large|B),
and Prob(Large|C). These values depend on what Smith does in equilibrium, so Jones’s

2The name “marginal likelihood” may seem strange to economists, since it is an unconditional likelihood
and when economists use “marginal” they mean “an increment conditional on starting from a particular
level”. The statisticians defined marginal likelihood this way because they start with Prob(a, b), and then
derive Prob(b). That is like going to the margin of a graph in (a, b)-space, the b-axis, and asking how
probable the value of b is integrating over all possible a’s.
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beliefs cannot be calculated independently of the equilibrium. This is the reason for the
three-step procedure suggested above, for what the modeller must do is propose an equilib-
rium and then use it to calculate the beliefs. Afterwards, he must check that the equilibrium
strategies are indeed the best responses given the beliefs they generate.

A candidate for equilibrium in Follow-the-Leader III is for Smith to choose Large if
the state is (A) or (B) and Small if it is (C), and for Jones to respond to Large with Large
and to Small with Small. This can be abbreviated as (L|A, L|B, S|C; L|L, S|S). Let us
test that this is an equilibrium, starting with the calculation of Prob(A|Large).

If Jones observes Large, he can rule out state (C), but he does not know whether the
state is (A) or (B). Bayes’s Rule tells him that the posterior probability of state (A) is

Prob(A|Large) = (1)(0.7)
(1)(0.7)+(1)(0.1)+(0)(0.2)

= 0.875.

(7)

The posterior probability of state (B) must then be 1− 0.875 = 0.125, which could also be
calculated from Bayes’s Rule, as follows:

(B|Large) = (1)(0.1)
(1)(0.7)+(1)(0.1)+(0)(0.2)

= 0.125.

(8)

Figure 8 shows a graphic intuition for Bayes’s Rule. The first line shows the total
probability, 1, which is the sum of the prior probabilities of states (A), (B), and (C). The
second line shows the probabilities, summing to 0.8, which remain after Large is observed
and state (C) is ruled out. The third line shows that state (A) represents an amount 0.7
of that probability, a fraction of 0.875. The fourth line shows that state (B) represents an
amount 0.1 of that probability, a fraction of 0.125.
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Figure 8: Bayes’s Rule

Jones must use Smith’s strategy in the proposed equilibrium to find numbers for
Prob(Large|A), Prob(Large|B), and Prob(Large|C). As always in Nash equilibrium, the
modeller assumes that the players know which equilibrium strategies are being played out,
even though they do not know which particular actions are being chosen.

Given that Jones believes that the state is (A) with probability 0.875 and state (B)
with probability 0.125, his best response is Large, even though he knows that if the state
were actually (B) the better response would be Small. Given that he observes Large,
Jones’s expected payoff from Small is −0.625 ( = 0.875[−1] + 0.125[2]), but from Large it
is 1.875 ( = 0.875[2]+0.125[1]). The strategy profile (L|A, L|B, S|C; L|L, S|S) is a bayesian
equilibrium.

A similar calculation can be done for Prob(A|Small). Using Bayes’s Rule, equation
(4) becomes

Prob(A|Small) =
(0)(0.7)

(0)(0.7) + (0)(0.1) + (1)(0.2)
= 0. (9)

Given that he believes the state is (C), Jones’s best response to Small is Small, which
agrees with our proposed equilibrium.

Smith’s best responses are much simpler. Given that Jones will imitate his action,
Smith does best by following his equilibrium strategy of (L|A, L|B, S|C).

The calculations are relatively simple because Smith uses a nonrandom strategy in
equilibrium, so, for instance, Prob(Small|A) = 0 in equation (9). Consider what happens
if Smith uses a random strategy of picking Large with probability 0.2 in state (A), 0.6 in
state (B), and 0.3 in state (C) (we will analyze such “mixed” strategies in Chapter 3). The
equivalent of equation (7) is

Prob(A|Large) =
(0.2)(0.7)

(0.2)(0.7) + (0.6)(0.1) + (0.3)(0.2)
= 0.54 (rounded). (10)

If he sees Large, Jones’s best guess is still that Nature chose state (A), even though in state
(A) Smith has the smallest probability of choosing Large, but Jones’s subjective posterior
probability, Pr(A|Large), has fallen to 0.54 from his prior of Pr(A) = 0.7.

The last two lines of Figure 8 illustrate this case. The second-to-last line shows the
total probability of Large, which is formed from the probabilities in all three states and
sums to 0.26 (=0.14 + 0.06 + 0.06). The last line shows the component of that probability
arising from state (A), which is the amount 0.14 and fraction 0.54 (rounded).

Regression to the Mean, the Two-Armed Bandit and Cascades

Bayesian learning is important not just in modelling bayesian games, but in explaining
behavior that is non-strategic, in the sense that although players may learn from the moves
of other players, their payoffs are not directly affected by those moves. I will discuss three
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phenomenon that give us useful exlpanations for behavior: regression to the mean, the
bandit problem, and cascades.

Regression to the mean is an old statistical idea that has a bayesian interpretation.
Suppose that each student’s performance on a test results partly from his ability and partly
from random error because of his mood the day of the test. The teacher does not know
the individual student’s ability, but does know that the average student will score 70 out
of 100. If a student scores 40, what should the teacher’s estimate of his ability be?

It should not be 40. A score of 30 points below the average score could be the result of
two things: (1) the student’s ability is below average, or (2) the student was in a bad mood
the day of the test. Only if mood is completely unimportant should the teacher use 40 as
his estimate. More likely, both ability and luck matter to some extent, so the teacher’s
best guess is that the student has an ability below average but was also unlucky. The best
estimate lies somewhere between 40 and 70, reflecting the influence of both ability and luck.
Of the students who score 40 on the test, more than half can be expected to score above
40 on the next test. Since the scores of these poorly performing students tend to float up
towards the mean of 70, this phenomenon is called “regression to the mean.” Similarly,
students who score 90 on the first test will tend to score less well on the second test.

This is “regression to the mean” (“towards” would be more precise) not “regression
beyond the mean.” A low score does indicate low ability, on average, so the predicted score
on the second test is still below average. Regression to the mean merely recognizes that
both luck and ability are at work.

In bayesian terms, the teacher in this example has a prior mean of 70, and is trying to
form a posterior estimate using the prior and one piece of data, the score on the first test.
For typical distributions, the posterior mean will lie between the prior mean and the data
point, so the posterior mean will be between 40 and 70.

In a business context, regression to the mean can be used to explain business con-
servatism, as I do in Rasmusen (1992b). It is sometimes claimed that businesses pass up
profitable investments because they have an excessive fear of risk. Let us suppose that the
business is risk neutral, because the risk associated with the project and the uncertainty
over its value are nonsystematic — that is, they are risks that a widely held corporation
can distribute in such a way that each shareholder’s risk is trivial. Suppose that the firm
will not spend $100,000 on an investment with a present value of $105,000. This is easily
explained if the $105,000 is an estimate and the $100,000 is cash. If the average value of a
new project of this kind is less than $100,000 — as is likely to be the case since profitable
projects are not easy to find — the best estimate of the value will lie between the measured
value of $105,000 and that average value, unless the staffer who came up with the $105,000
figure has already adjusted his estimate. Regressing the $105,000 to the mean may regress
it past $100,000. Put a bit differently, if the prior mean is, let us say, $80,000, and the data
point is $105,000, the posterior may well be less than $100,000. Regression to the mean is
an alternative to strategic behavior in explaining certain odd phenomena. In analyzing test
scores, one might try to explain the rise in the scores of poor students by changes in their
effort level in an attempt to achieve a target grade in the course with minimum work. In
analyzing business decisions, one might try to explain why apparently profitable projects
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are rejected because of managers’ dislike for innovations that would require them to work
harder.

single decisionmaker “Two-Armed Bandit” model of Rothschild (1974). In each of
a sequence of periods, a person chooses to play slot machine A or slot machine B. Slot
machine A pays out $1 with known probability 0.5 in exchange for the person putting
in $0.25 and pulling its arm. Slot machine B pays out $1 with an unknown probability
which has a prior probability density centered on 0.5. The optimal strategy is to begin
by playing machine B, since not only does it have the same expected payout per period,
but also playing it improves the player’s information, whereas playing machine A leaves
his information unchanged. The player will switch to machine A if machine B pays out $0
often enough relative to the number of times it pays out $1, where “often enough” depends
on the particular prior beliefs he has. If the first 1,000 plays all result in a payout of $1,
he will keep playing machine B, but if the next 9,000 plays all result in a payout of $0,
he should become very sure that machine B’s payout rate is less than 0.5 and he should
switch to machine A. But he will never switch back. Once he is playing machine A, he is
learning nothing new as a result of his wins and losses, and even if he gets a payout of $0
ten thousand times in a row, that gives him no reason to change machines. As a result, it
can happen that even if machine B actually is better, a player following the ex ante optimal
strategy can end up playing machine A an infinite number of times.

Another model with a similar flavor is the cascade model. Consider a simplified
version of the first example of a cascade in Bikchandani, Hirshleifer & Welch (1992) (who
with Bannjerjee [1992] originated the idea; see also Hirshleifer [1995] ). A sequence of
people must decide whether to Adopt at cost 0.5 or Reject a project worth either 0 or 1
with equal prior probabilities, having observed the decisions of people ahead of them in
the sequence plus an independent private signal that takes the value High with probability
p > 0.5 if the project’s value is 1 and with probability (1− p) if it is 0, and otherwise takes
the value Low.

The first person will simply follow his signal, choosing Adopt if the signal is High and
Reject if it is Low. The second person uses the information of the first person’s decision
plus his own signal. One Nash equilibrium is for the second person to always imitate the
first person. It is easy to see that he should imitate the first person if the first person chose
Adopt and the second signal is High. What if the first person chose Adopt and the second
signal is Low? Then the second person can deduce that the first signal was High, and
choosing on the basis of a prior of 0.5 and two contradictory signals of equal accuracy, he
is indifferent— and so will not deviate from an equilibrium in which his assigned strategy
is to imitate the first person when indifferent. The third person, having seen the first two
choose Adopt, will also deduce that the first person’s signal was High. He will ignore the
second person’s decision, knowing that in equilibrium that person just imitates, but he,
too will imitate. Thus,even if the sequence of signals is (High, Low, Low, Low, Low...),
everyone will choose Adopt. A “cascade” has begun, in which players later in the sequence
ignore their own information and rely completely on previous players. Thus, we have a way
to explain fads and fashions as Bayesian updating under incomplete information, without
any strategic behavior.
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2.5: An Example: The Png Settlement Game

The Png (1983) model of out-of-court settlement is an example of a game with a fairly
complicated extensive form.3 The plaintiff alleges that the defendant was negligent in
providing safety equipment at a chemical plant, a charge which is true with probability
q. The plaintiff files suit, but the case is not decided immediately. In the meantime, the
defendant and the plaintiff can settle out of court.

What are the moves in this game? It is really made up of two games: the one in which
the defendant is liable for damages, and the one in which he is blameless. We therefore start
the game tree with a move by Nature, who makes the defendant either liable or blameless.
At the next node, the plaintiff takes an action: Sue or Grumble. If he decides on Grumble
the game ends with zero payoffs for both players. If he decides to Sue, we go to the next
node. The defendant then decides whether to Resist or Offer to settle. If the defendant
chooses Offer, then the plaintiff can Settle or Refuse; if the defendant chooses to Resist, the
plaintiff can Try the case or Drop it. The following description adds payoffs to this model.

The Png Settlement Game

Players
The plaintiff and the defendant.

The Order of Play
0 Nature chooses the defendant to be Liable for injury to the plaintiff with probability
q = 0.13 and Blameless otherwise. The defendant observes this but the plaintiff does not.
1 The plaintiff decides to Sue or just to Grumble.
2 The defendant Offers a settlement amount of S = 0.15 to the plaintiff, or Resist, setting
S = 0.
3a If the defendant offered S = 0.15, the plaintiff agrees to Settle or he Refuses and goes
to trial.
3b If the defendant offered S = 0, the plaintiff Drops the case, for legal costs of P = 0 and
D = 0 for himself and the defendant, or chooses to Try it, creating legal costs of P = 0.1
and D = 0.2
4 If the case goes to trial, the plaintiff wins damages of W = 1 if the defendant is Liable
and W = 0 if the defendant is Blameless. If the case is dropped, W = 0.

Payoffs
The plaintiff’s payoff is S + W − P . The defendant’s payoff is −S −W −D.

We can also depict this on a game tree, as in Figure 9.

3“Png,” by the way, is pronounced the same way it is spelt.
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Figure 9: The Game Tree for The Png Settlement Game

This model assumes that the settlement amount, S = 0.15, and the amounts spent on
legal fees are exogenous. Except in the infinitely long games without end nodes that will
appear in Chapter 5, an extensive form should incorporate all costs and benefits into the
payoffs at the end nodes, even if costs are incurred along the way. If the court required a
$100 filing fee (which it does not in this game, although a fee will be required in the similar
game of Nuisance Suits in Section 4.3), it would be subtracted from the plaintiff’s payoffs at
every end node except those resulting from his choice of Grumble. Such consolidation makes
it easier to analyze the game and would not affect the equilibrium strategies unless payments
along the way revealed information, in which case what matters is the information, not the
fact that payoffs change.

We assume that if the case reaches the court, justice is done. In addition to his legal
fees D, the defendant pays damages W = 1 only if he is liable. We also assume that the
players are risk neutral, so they only care about the expected dollars they will receive, not
the variance. Without this assumption we would have to translate the dollar payoffs into
utility, but the game tree would be unaffected.

This is a game of certain, asymmetric, imperfect, and incomplete information. We
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have assumed that the defendant knows whether he is liable, but we could modify the
game by assuming that he has no better idea than the plaintiff of whether the evidence
is sufficient to prove him so. The game would become one of symmetric information and
we could reasonably simplify the extensive form by eliminating the initial move by Nature
and setting the payoffs equal to the expected values. We cannot perform this simplification
in the original game, because the fact that the defendant, and only the defendant, knows
whether he is liable strongly affects the behavior of both players.

Let us now find the equilibrium. Using dominance we can rule out one of the plaintiff’s
strategies immediately — Grumble — which is dominated by (Sue, Settle, Drop).

Whether a strategy profile is a Nash equilibrium depends on the parameters of the
model—S, W, P, D and q, which are the settlement amount, the damages, the court costs
for the plaintiff and defendant, and the probability the defendant is liable. Depending on
the parameter values, three outcomes are possible: settlement (if the settlement amount is
low), trial (if expected damages are high and the plaintiff’s court costs are low), and the
plaintiff dropping the action (if expected damages minus court costs are negative). Here, I
have inserted the parameter values S = 0.15, D = 0.2, W = 1, q = 0.13, and P = 0.1. Two
Nash equilibria exist for this set of parameter values, both weak.

One equilibrium is the strategy profile {(Sue, Settle, Try), (Offer, Offer)}. The plaintiff
sues, the defendant offers to settle (whether liable or not), and the plaintiff agrees to settle.
Both players know that if the defendant did not offer to settle, the plaintiff would go to
court and try the case. Such out-of-equilibrium behavior is specified by the equilibrium,
because the threat of trial is what induces the defendant to offer to settle, even though
trials never occur in equilibrium. This is a Nash equilibrium because given that the plaintiff
chooses (Sue, Settle, Try), the defendant can do no better than (Offer, Offer), settling for
a payoff of −0.15 whether he is liable or not; and, given that the defendant chooses (Offer,
Offer), the plaintiff can do no better than the payoff of 0.15 from (Sue, Settle, Try).

The other equilibrium is {(Sue, Refuse, Try), (Resist, Resist)}. The plaintiff sues, the
defendant resists and makes no settlement offer, the plaintiff would refuse any offer that
was made, and goes to trial. Since he foresees the plaintiff will refuse a settlement offer of
S = 0.15, the defendant is willing to resist, because his action makes no difference.

One final observation on the Png Settlement Game: the game illustrates the Harsanyi
doctrine in action, because while the plaintiff and defendant differ in their beliefs as to the
probability the plaintiff will win, they do so because the defendant has different information,
not because the modeller assigns them different beliefs at the start of the game. This seems
awkward compared to the everday way of approaching this problem in which we simply
note that potential litigants have different beliefs, and will go to trial if they both think
they can win. It is very hard to make the story consistent, however, because if the differing
beliefs are common knowledge, both players know that one of them is wrong, and each has
to believe that he is correct. This may be fine as a “reduced form,” in which the attempt
is to simply describe what happens without explaining it in any depth. After all, even in
the Png Settlement Game, if a trial occurs it is because the players differ in their beliefs, so
one could simply chop off the first part of the game tree. But that is also the problem with
violating the Harsanyi doctrine: one cannot analyze how the players react to each other’s
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moves if the modeller simply assigns them inflexible beliefs. In the Png Settlement Game,
a settlement is rejected and a trial can occur under certain parameters because the plaintiff
weighs the probability that the defendant knows he will win versus the probablility that he
is bluffing, and sometimes decides to risk a trial. Without the Harsanyi doctrine it is very
hard to evaluate such an explanation for trials.
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NOTES

N2.1 The strategic and extensive forms of a game

• The term “outcome matrix” is used in Shubik (1982, p. 70), but never formally defined
there.

• The term “node” is sometimes defined to include only points at which a player or Nature
makes a decision, which excludes the end points.

N2.2 Information Sets

• If you wish to depict a situation in which a player does not know whether the game has
reached node A1 or A2 and he has different action sets at the two nodes, restructure the
game. If you wish to say that he has action set (X,Y,Z) at A1 and (X,Y) at A2, first add
action Z to the information set at A2. Then specify that at A2, action Z simply leads to a
new node, A3, at which the choice is between X and Y.

• The term “common knowledge” comes from Lewis (1969). Discussions include Branden-
burger (1992) and Geanakoplos (1992). For rigorous but nonintuitive definitions of common
knowledge, see Aumann (1976) (for two players) and Milgrom (1981a) (for n players).

N2.3 Perfect, Certain, Symmetric, and Complete Information

• Tirole (1988, p. 431) (and more precisely Fudenberg & Tirole [1991a, p. 82]) have defined
games of almost perfect information. They use this term to refer to repeated simultaneous-
move games (of the kind studied here in Chapter 5) in which at each repetition all players
know the results of all the moves, including those of Nature, in previous repetitions. It
is a pity they use such a general-sounding term to describe so narrow a class of games; it
could be usefully extended to cover all games which have perfect information except for
simultaneous moves.

• Poker Classifications. (1) Perfect, certain. (2) Incomplete, symmetric, certain. (3)
Incomplete, asymmetric, certain. (4) Complete, asymmetric, certain. (5) Perfect, uncertain.
(6) Incomplete, asymmetric, certain.

• For explanation of von Neumann-Morgenstern utility, see Varian (1992, chapter 11) or
Kreps (1990a, Chapter 3). For other approaches to utility, see Starmer (2000). Expected
utility and Bayesian updating are the two foundations of standard game theory, partly
because they seem realistic but more because they are so simple to use. Sometimes they
do not explain people’s behavior well, and there exist extensive literatures (a) pointing
out anomalies, and (b) suggesting alternatives. So far no alternatives have proven to be
big enough improvements to justify replacing the standard techniques, given the tradeoff
between descriptive realism and added complexity in modelling. The standard response
is to admit and ignore the anomalies in theoretical work, and to not press any theoretical
models too hard in situations where the anomalies are likely to make a significant difference.
On anomalies, see Kahneman, Slovic & Tversky (1982) (an edited collection); Thaler (1992)
(essays from his Journal of Economic Perspectives column); and Dawes (1988) (a good mix
of psychology and business).
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• Mixed strategies (to be described in Section 3.1) are allowed in a game of perfect information
because they are an aspect of the game’s equilibrium, not of its exogenous structure.

• Although the word “perfect,” appears in both “perfect information” (Section 2.3) and
“perfect equilibrium” (Section 4.1), the concepts are unrelated.

• An unobserved move by Nature in a game of symmetric information can be represented in
any of three ways: (1) as the last move in the game; (2) as the first move in the game; or
(3) by replacing the payoffs with the expected payoffs and not using any explicit moves by
Nature.

N2.4 The Harsanyi Transformation and Bayesian Games

• Mertens & Zamir (1985) probes the mathematical foundations of the Harsanyi transfor-
mation. The transformation requires the extensive form to be common knowledge, which
raises subtle questions of recursion.

• A player always has some idea of what the payoffs are, so we can always assign him a
subjective probability for each possible payoff. What would happen if he had no idea?
Such a question is meaningless, because people always have some notion, and when they
say they do not, they generally mean that their prior probabilities are low but positive for a
great many possibilities. You, for instance, probably have as little idea as I do of how many
cups of coffee I have consumed in my lifetime, but you would admit it to be a nonnegative
number less than 3,000,000, and you could make a much more precise guess than that. On
the topic of subjective probability, the classic reference is Savage (1954).

• The term “marginal likelihood” is confusing for economists, since it refers to an uncondi-
tional likelihood. Statisticians came up with it because they start with Prob(a, b) and then
move to Prob(a). That is like going to the margin of a graph— the a-axis– and asking how
probable each value of a is.

• If two players have common priors and their information partitions are finite, but they each
have private information, iterated communication between them will lead to the adoption
of a common posterior. This posterior is not always the posterior they would reach if they
directly pooled their information, but it is almost always that posterior (Geanakoplos &
Polemarchakis [1982]).
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Problems

2.1. The Monty Hall Problem (easy)
You are a contestant on the TV show, “Let’s Make a Deal.” You face three curtains, labelled
A, B and C. Behind two of them are toasters, and behind the third is a Mazda Miata car. You
choose A, and the TV showmaster says, pulling curtain B aside to reveal a toaster, “You’re lucky
you didn’t choose B, but before I show you what is behind the other two curtains, would you like
to change from curtain A to curtain C?” Should you switch? What is the exact probability that
curtain C hides the Miata?

2.2. Elmer’s Apple Pie (hard)
Mrs Jones has made an apple pie for her son, Elmer, and she is trying to figure out whether the
pie tasted divine, or merely good. Her pies turn out divinely a third of the time. Elmer might be
ravenous, or merely hungry, and he will eat either 2, 3, or 4 pieces of pie. Mrs Jones knows he
is ravenous half the time (but not which half). If the pie is divine, then, if Elmer is hungry, the
probabilities of the three consumptions are (0, 0.6, 0.4), but if he is ravenous the probabilities are
(0, 0, 1). If the pie is just good, then the probabilities are (0.2, 0.4, 0.4) if he is hungry and (0.1,
0.3, 0.6) if he is ravenous.

Elmer is a sensitive, but useless, boy. He will always say that the pie is divine and his appetite
weak, regardless of his true inner feelings.

(a) What is the probability that he will eat four pieces of pie?

(b) If Mrs Jones sees Elmer eat four pieces of pie, what is the probability that he is ravenous
and the pie is merely good?

(c) If Mrs Jones sees Elmer eat four pieces of pie, what is the probability that the pie is divine?

2.3. Cancer Tests (easy) (adapted from McMillan [1992, p. 211])
Imagine that you are being tested for cancer, using a test that is 98 percent accurate. If you
indeed have cancer, the test shows positive (indicating cancer) 98 percent of the time. If you do
not have cancer, it shows negative 98 percent of the time. You have heard that 1 in 20 people in
the population actually have cancer. Now your doctor tells you that you tested positive, but you
shouldn’t worry because his last 19 patients all died. How worried should you be? What is the
probability you have cancer?

2.4. The Battleship Problem (hard) (adapted from Barry Nalebuff, “Puzzles,” Journal of
Economic Perspectives, 2:181-82 [Fall 1988])
The Pentagon has the choice of building one battleship or two cruisers. One battleship costs the
same as two cruisers, but a cruiser is sufficient to carry out the navy’s mission — if the cruiser
survives to get close enough to the target. The battleship has a probability of p of carrying out
its mission, whereas a cruiser only has probability p/2. Whatever the outcome, the war ends and
any surviving ships are scrapped. Which option is superior?

2.5. Joint Ventures (medium)
Software Inc. and Hardware Inc. have formed a joint venture. Each can exert either high or
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low effort, which is equivalent to costs of 20 and 0. Hardware moves first, but Software cannot
observe his effort. Revenues are split equally at the end, and the two firms are risk neutral. If
both firms exert low effort, total revenues are 100. If the parts are defective, the total revenue is
100; otherwise, if both exert high effort, revenue is 200, but if only one player does, revenue is 100
with probability 0.9 and 200 with probability 0.1. Before they start, both players believe that the
probability of defective parts is 0.7. Hardware discovers the truth about the parts by observation
before he chooses effort, but Software does not.

(a) Draw the extensive form and put dotted lines around the information sets of Software at
any nodes at which he moves.

(b) What is the Nash equilibrium?

(c) What is Software’s belief, in equilibrium, as to the probability that Hardware chooses low
effort?

(d) If Software sees that revenue is 100, what probability does he assign to defective parts if he
himself exerted high effort and he believes that Hardware chose low effort?

2.6. California Drought (hard)
California is in a drought and the reservoirs are running low. The probability of rainfall in 1991
is 1/2, but with probability 1 there will be heavy rainfall in 1992 and any saved water will be
useless. The state uses rationing rather than the price system, and it must decide how much
water to consume in 1990 and how much to save till 1991. Each Californian has a utility function
of U = log(w90) + log(w91). Show that if the discount rate is zero the state should allocate twice
as much water to 1990 as to 1991.

2.7. Smith’s Energy Level (easy)
The boss is trying to decide whether Smith’s energy level is high or low. He can only look in
on Smith once during the day. He knows if Smith’s energy is low, he will be yawning with a 50
percent probability, but if it is high, he will be yawning with a 10 percent probability. Before he
looks in on him, the boss thinks that there is an 80 percent probability that Smith’s energy is
high, but then he sees him yawning. What probability of high energy should the boss now assess?

2.8. Two Games (medium)
Suppose that Column gets to choose which of the two payoff structures in Tables 6 and 7 applies
to the simultaneous-move game he plays with Row. Row does not know which of these Column
has chosen.

Table 6: Payoffs (A), The Prisoner’s Dilemma

Column
Deny Confess

Deny -1,-1 -10, 0
Row:

Confess 0,-10 -8,-8
Payoffs to: (Row,Column).
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Table 7: Payoffs (B), A Confession Game

Column
Deny Confess

Deny -4,-4 -12, -200
Row:

Confess -200,-12 -10,-10
Payoffs to: (Row,Column).

(a) What is one example of a strategy for each player?

(b) Find a Nash equilibrium. Is it unique? Explain your reasoning.

(c) Is there a dominant strategy for Column? Explain why or why not.

(d) Is there a dominant strategy for Row?Explain why or why not.

(e) Does Row’s choice of strategy depend on whether Column is rational or not? Explain why
or why not.
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Bayes Rule at the Bar: A Classroom Game for Chapter 2

I have wandered into a dangerous bar in Jersey City. There are six people in there. Based
on past experience, I estimate that three are cold-blooded killers and three are cowardly bullies.
I know that 2/3 of killers are aggressive and 1/3 reasonable; but 1/3 of cowards are aggressive
and 2/3 are reasonable. Unfortunately, I spill my drink on a mean-looking rascal, who asks me if
I want to die.

In crafting my response in the two seconds I have to think, I would like to know the probability
I haveoffended a killer. Give me your estimate.

The story continues. A friend of the wet rascal comes in from the street outside the bar
and learns what happened. He, too, turns aggressive. I know that the friend is just like the first
rascal— a killer if the first one was a killer, a coward otherwise. Does this extra trouble change
your estimate that the two of them are killers?

This game is a descendant of the game in Charles Holt & Lisa R. Anderson. “Classroom
Games: Understanding Bayes Rule,” Journal of Economic Perspectives, 10: 179-187 (Spring
1996), but I use a different heuristic for the rule and a barroom story instead of urns. Psychologists
have found that people can solve logical puzzles better if the puzzles are associated with a story
involving social interactions. See Chapter 7 of Robin Dunbar’s The Trouble with Science, which
explains experiments and ideas from Cosmides & Toobey (1993).
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