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6 Dynamic Games with Incomplete
Information

6.1 Perfect Bayesian Equilibrium: Entry Deterrence II and III

Asymmetric information, and, in particular, incomplete information, is enormously impor-
tant in game theory. This is particularly true for dynamic games, since when the players
have several moves in sequence, their earlier moves may convey private information that is
relevant to the decisions of players moving later on. Revealing and concealing information
are the basis of much of strategic behavior and are especially useful as ways of explaining
actions that would be irrational in a nonstrategic world.

Chapter 4 showed that even if there is symmetric information in a dynamic game,
Nash equilibrium may need to be refined using subgame perfectness if the modeller is to
make sensible predictions. Asymmetric information requires a somewhat different refine-
ment to capture the idea of sunk costs and credible threats, and Section 6.1 sets out the
standard refinement of perfect bayesian equilibrium. Section 6.2 shows that even this may
not be enough refinement to guarantee uniqueness and discusses further refinements based
on out-of- equilibrium beliefs. Section 6.3 uses the idea to show that a player’s ignorance
may work to his advantage, and to explain how even when all players know something, lack
of common knowledge still affects the game. Section 6.4 introduces incomplete information
into the repeated prisoner’s dilemma and shows the Gang of Four solution to the Chain-
store Paradox of Chapter 5. Section 6.5 describes the celebrated Axelrod tournament, an
experimental approach to the same paradox. Section 6.6 applies the idea of a dynamic
game of incomplete information to the evolution of creditworthiness using the model of
Diamond (1989).

Subgame Perfectness Is Not Enough

In games of asymmetric information, we will still require that an equilibrium be subgame
perfect, but the mere forking of the game tree might not be relevant to a player’s decision,
because with asymmetric information he does not know which fork the game has taken.
Smith might know he is at one of two different nodes depending on whether Jones has
high or low production costs, but if he does not know the exact node, the “subgames”
starting at each node are irrelevant to his decisions. In fact, they are not even subgames
as we have defined them, because they cut across Smith’s information sets. This can be
seen in an asymmetric information version of Entry Deterrence I (Section 4.2). In Entry
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Deterrence I, the incumbent colluded with the entrant because fighting him was more costly
than colluding once the entrant had entered. Now, let us set up the game to allow some
entrants to be Strong and some Weak in the sense that it is more costly for the incumbent
to choose Fight against a Strong entrant than a Weak one. The incumbent’s payoff from
Fight|Strong will be 0, as before, but his payoff from Fight|Weak will be X, where X
will take values ranging from 0 ( Entry Deterrence I ) to 300 (Entry Deterrence IV and
V) in different versions of the game.

Entry Deterrence II, III, and IV will all have the extensive form shown in Figure 1.
With 50 percent probability, the incumbent’s payoff from Fight is X rather than the 0 in
Entry Deterrence I, but the incumbent does not know which payoff is the correct one in
the particular realization of the game. This is modelled as an initial move by Nature, who
chooses between the entrant being Weak or Strong, unobserved by the incumbent.

Figure 1: Entry Deterrence II, III, and IV

Entry Deterrence II: Fighting Is Never Profitable

In Entry Deterrence II, X = 1, so information is not very asymmetric. It is common
knowledge that the incumbent never benefits from Fight, even though his exact payoff
might be zero or might be one. Unlike in the case of Entry Deterrence I, however, subgame
perfectness does not rule out any Nash equilibria, because the only subgame is the subgame
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starting at node N , which is the entire game. A subgame cannot start at nodes E1 or E2,
because neither of those nodes are singletons in the information partitions. Thus, the
implausible Nash equilibrium, (Stay Out, Fight), escapes elimination by a technicality.

The equilibrium concept needs to be refined in order to eliminate the implausible
equilibrium. Two general approaches can be taken: either introduce small “trembles” into
the game, or require that strategies be best responses given rational beliefs. The first
approach takes us to the “trembling hand-perfect” equilibrium, while the second takes us
to the “perfect bayesian” and “sequential” equilibrium. The results are similar whichever
approach is taken.

Trembling-Hand Perfectness

Trembling-hand perfectness is an equilibrium concept introduced by Selten (1975) according
to which a strategy that is to be part of an equilibrium must continue to be optimal for the
player even if there is a small chance that the other player will pick an out-of-equilibrium
action (i.e., that the other player’s hand will “tremble”).

Trembling-hand perfectness is defined for games with finite action sets as follows.

The strategy profile s∗ is a trembling-hand perfect equilibrium if for any ε there is a
vector of positive numbers δ1, . . . , δn ∈ [0, 1] and a vector of completely mixed strategies
σ1, . . . σn such that the perturbed game where every strategy is replaced by (1− δi)si + δiσi

has a Nash equilibrium in which every strategy is within distance ε of s∗.

Every trembling-hand perfect equilibrium is subgame perfect; indeed, Section 4.1 jus-
tified subgame perfectness using a tremble argument. Unfortunately, it is often hard to
tell whether a strategy profile is trembling- hand perfect, and the concept is undefined for
games with continuous strategy spaces because it is hard to work with mixtures of a con-
tinuum (see note N3.1). Moreover, the equilibrium depends on which trembles are chosen,
and deciding why one tremble should be more common than another may be difficult.

Perfect Bayesian Equilibrium and Sequential Equilibrium

The second approach to asymmetric information, introduced by Kreps & Wilson (1982b)
in the spirit of Harsanyi (1967), is to start with prior beliefs, common to all players, that
specify the probabilities with which Nature chooses the types of the players at the beginning
of the game. Some of the players observe Nature’s move and update their beliefs, while
other players can update their beliefs only by deductions they make from observing the
actions of the informed players.

The deductions used to update beliefs are based on the actions specified by the equilib-
rium. When players update their beliefs, they assume that the other players are following
the equilibrium strategies, but since the strategies themselves depend on the beliefs, an
equilibrium can no longer be defined based on strategies alone. Under asymmetric infor-
mation, an equilibrium is a strategy profile and a set of beliefs such that the strategies are
best responses. The profile of beliefs and strategies is called an assessment by Kreps and
Wilson.
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On the equilibrium path, all that the players need to update their beliefs are their
priors and Bayes’ s Rule, but off the equilibrium path this is not enough. Suppose that
in equilibrium, the entrant always enters. If for whatever reason the impossible happens
and the entrant stays out, what is the incumbent to think about the probability that the
entrant is weak? Bayes’ s Rule does not help, because when Prob(data) = 0, which is the
case for data such as Stay Out which is never observed in equilibrium, the posterior belief
cannot be calculated using Bayes’ s Rule. From section 2.4,

Prob(Weak|Stay Out) =
Prob(Stay Out|Weak)Prob(Weak)

Prob(Stay Out)
. (1)

The posterior Prob(Weak|Stay Out) is undefined, because (1) requires dividing by zero.

A natural way to define equilibrium is as a strategy profile consisting of best responses
given that equilibrium beliefs follow Bayes’ s Rule and out-of- equilibrium beliefs follow a
specified pattern that does not contradict Bayes’ s Rule.

A perfect bayesian equilibrium is a strategy profile s and a set of beliefs µ such that at
each node of the game:

(1) The strategies for the remainder of the game are Nash given the beliefs and strategies
of the other players.
(2) The beliefs at each information set are rational given the evidence appearing thus far in
the game (meaning that they are based, if possible, on priors updated by Bayes’ s Rule, given
the observed actions of the other players under the hypothesis that they are in equilibrium).

Kreps & Wilson (1982b) use this idea to form their equilibrium concept of sequen-
tial equilibrium, but they impose a third condition, defined only for games with discrete
strategies, to restrict beliefs a little further:

(3) The beliefs are the limit of a sequence of rational beliefs, i.e., if (µ∗, s∗) is the equi-
librium assessment, then some sequence of rational beliefs and completely mixed strategies
converges to it:

(µ∗, s∗) = Limn→∞(µn, sn) for some sequence (µn, sn) in {µ, s}.

Condition (3) is quite reasonable and makes sequential equilibrium close to trembling-
hand perfect equilibrium, but it adds more to the concept’s difficulty than to its usefulness.
If players are using the sequence of completely mixed strategies sn, then every action is
taken with some positive probability, so Bayes’Rule can be applied to form the beliefs µn

after any action is observed. Condition (3) says that the equilibrium assessment has to be
the limit of some such sequence (though not of every such sequence). For the rest of the
book we will use perfect bayesian equilibrium and dispense with condition (3), although it
usually can be satisfied.

Sequential equilibria are always subgame perfect (condition (1) takes care of that).
Every trembling-hand perfect equilibrium is a sequential equilibrium, and “almost every”
sequential equilibrium is trembling hand perfect. Every sequential equilibrium is perfect
bayesian, but not every perfect bayesian equilibrium is sequential.
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Back to Entry Deterrence II

Armed with the concept of the perfect bayesian equilibrium, we can find a sensible equi-
librium for Entry Deterrence II .

Entrant: Enter|Weak, Enter|Strong
Incumbent: Collude
Beliefs: Prob( Strong| Stay Out) = 0.4

In this equilibrium the entrant enters whether he is Weak or Strong. The incumbent’s
strategy is Collude, which is not conditioned on Nature’s move, since he does not observe
it. Because the entrant enters regardless of Nature’s move, an out-of-equilibrium belief for
the incumbent if he should observe Stay Out must be specified, and this belief is arbitrarily
chosen to be that the incumbent’s subjective probability that the entrant is Strong is 0.4
given his observation that the entrant deviated by choosing Stay Out. Given this strategy
profile and out-of-equilibrium belief, neither player has incentive to change his strategy.

There is no perfect bayesian equilibrium in which the entrant chooses Stay Out. Fight
is a bad response even under the most optimistic possible belief, that the entrant is Weak
with probability 1. Notice that perfect bayesian equilibrium is not defined structurally, like
subgame perfectness, but rather in terms of optimal responses. This enables it to come
closer to the economic intuition which we wish to capture by an equilibrium refinement.

Finding the perfect bayesian equilibrium of a game, like finding the Nash equilibrium,
requires intelligence. Algorithms are not useful. To find a Nash equilibrium, the modeller
thinks about his game, picks a plausible strategy profile, and tests whether the strategies
are best responses to each other. To make it a perfect bayesian equilibrium, he notes
which actions are never taken in equilibrium and specifies the beliefs that players use to
interpret those actions. He then tests whether each player’s strategies are best responses
given his beliefs at each node, checking in particular whether any player would like to take
an out-of-equilibrium action in order to set in motion the other players’ out-of-equilibrium
beliefs and strategies. This process does not involve testing whether a player’s beliefs are
beneficial to the player, because players do not choose their own beliefs; the priors and
out-of-equilibrium beliefs are exogenously specified by the modeller.

One might wonder why the beliefs have to be specified in Entry Deterrence II. Does
not the game tree specify the probability that the entrant is Weak? What difference
does it make if the entrant stays out? Admittedly, Nature does choose each type with
probability 0.5, so if the incumbent had no other information than this prior, that would
be his belief. But the entrant’s action might convey additional information. The concept
of perfect bayesian equilibrium leaves the modeller free to specify how the players form
beliefs from that additional information, so long as the beliefs do not violate Bayes’ Rule.
(A technically valid choice of beliefs by the modeller might still be met with scorn, though,
as with any silly assumption. ) Here, the equilibrium says that if the entrant stays out,
the incumbent believes he is Strong with probability 0.4 and Weak with probability 0.6,
beliefs that are arbitrary but do not contradict Bayes’ s Rule.

In Entry Deterrence II the out-of-equilibrium beliefs do not and should not matter.
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If the entrant chooses Stay Out, the game ends, so the incumbent’s beliefs are irrelevant.
Perfect bayesian equilibrium was only introduced as a way out of a technical problem. In
the next section, however, the precise out-of- equilibrium beliefs will be crucial to which
strategy profiles are equilibria.

6.2 Refining Perfect Bayesian Equilibrium: The PhD Admissions Game

Entry Deterrence III: Fighting Is Sometimes Profitable

In Entry Deterrence III, assume that X = 60, not X = 1. This means that fighting is more
profitable for the incumbent than collusion if the entrant is Weak. As before, the entrant
knows if he is Weak, but the incumbent does not. Retaining the prior after observing
out- of-equilibrium actions, which in this game is Prob(Strong) = 0.5, is a convenient way
to form beliefs that is called passive conjectures. The following is a perfect bayesian
equilibrium which uses passive conjectures.

A plausible pooling equilibrium for Entry Deterrence III
Entrant: Enter|Weak, Enter|Strong
Incumbent: Collude, Out-of-equilibrium beliefs: Prob(Strong| Stay Out) = 0.5

In choosing whether to enter, the entrant must predict the incumbent’s behavior. If
the probability that the entrant is Weak is 0.5, the expected payoff to the incumbent
from choosing Fight is 30 (= 0.5[0] + 0.5[60]), which is less than the payoff of 50 from
Collude. The incumbent will collude, so the entrant enters. The entrant may know that
the incumbent’s payoff is actually 60, but that is irrelevant to the incumbent’s behavior.

The out-of-equilibrium belief does not matter to this first equilibrium, although it will
in other equilibria of the same game. Although beliefs in a perfect bayesian equilibrium
must follow Bayes’ s Rule, that puts very little restriction on how players interpret out-of-
equilibrium behavior. Out-of- equilibrium behavior is “impossible,” so when it does occur
there is no obvious way the player should react. Some beliefs may seem more reasonable
than others, however, and Entry Deterrence III has another equilibrium that requires less
plausible beliefs off the equilibrium path.

An implausible equilibrium for Entry Deterrence III
Entrant: Stay Out|Weak, Stay Out|Strong
Incumbent: Fight, Out-of-equilibrium beliefs: Prob(Strong|Enter) = 0.1

This is an equilibrium because if the entrant were to deviate and enter, the incumbent
would calculate his payoff from fighting to be 54 (= 0.1[0] + 0.9[60]), which is greater than
the Collude payoff of 50. The entrant would therefore stay out.

The beliefs in the implausible equilibrium are different and less reasonable than in the
plausible equilibrium. Why should the incumbent believe that weak entrants would enter
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mistakenly nine times as often as strong entrants? The beliefs do not violate Bayes’ s Rule,
but they have no justification.

The reasonableness of the beliefs is important because if the incumbent uses passive
conjectures, the implausible equilibrium breaks down. With passive conjectures, the in-
cumbent would want to change his strategy to Collude, because the expected payoff from
Fight would be less than 50. The implausible equilibrium is less robust with respect to
beliefs than the plausible equilibrium, and it requires beliefs that are harder to justify.

Even though dubious outcomes may be perfect bayesian equilibria, the concept does
have some bite, ruling out other dubious outcomes. There does not, for example, exist an
equilibrium in which the entrant enters only if he is Strong and stays out if he is Weak
(called a “separating equilibrium” because it separates out different types of players). Such
an equilibrium would have to look like this:

A conjectured separating equilibrium for Entry Deterrence III
Entrant: Stay Out|Weak, Enter|Strong
Incumbent: Collude

No out-of-equilibrium beliefs are specified for the conjectures in the separating equi-
librium because there is no out-of-equilibrium behavior about which to specify them. Since
the incumbent might observe either Stay out or Enter in equilibrium, the incumbent will
always use Bayes’ s Rule to form his beliefs. He will believe that an entrant who stays
out must be weak and an entrant who enters must be strong. This conforms to the idea
behind Nash equilibrium that each player assumes that the other follows the equilibrium
strategy, and then decides how to reply. Here, the incumbent’s best response, given his
beliefs, is Collude|Enter, so that is the second part of the proposed equilibrium. But this
cannot be an equilibrium, because the entrant would want to deviate. Knowing that entry
would be followed by collusion, even the weak entrant would enter. So there cannot be an
equilibrium in which the entrant enters only when strong.

The PhD Admissions Game

Passive conjectures may not always be the most satisfactory belief, as the next example
shows. Suppose that a university knows that 90 percent of the population hate economics
and would be unhappy in its PhD program, and 10 percent love economics and would
do well. In addition, it cannot observe the applicant’s type. If the university rejects an
application, its payoff is 0 and the applicant’s is −1 because of the trouble needed to apply.
If the university accepts the application of someone who hates economics, the payoffs of
both university and student are −10, but if the applicant loves economics, the payoffs
are +20 for each player. Figure 2 shows this game in extensive form. The population
proportions are represented by a node at which Nature chooses the student to be a Lover
or Hater of economics.

175



Figure 2: The PhD Admissions Game

The PhD Admissions Game is a signalling game of the kind we will look at in Chapter
10. It has various perfect bayesian equilibria that differ in their out-of-equilibrium beliefs,
but the equilibria can be divided into two distinct categories, depending on the outcome:
the separating equilibrium, in which the lovers of economics apply and the haters do
not, and the pooling equilibrium, in which neither type of student applies.

A separating equilibrium for the PhD Admissions Game
Student: Apply |Lover, Do Not Apply | Hater
University: Admit

The separating equilibrium does not need to specify out-of-equilibrium beliefs, because
Bayes’ s Rule can always be applied whenever both of the two possible actions Apply and
Do Not Apply can occur in equilibrium.
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A pooling equilibrium for the PhD Admissions Game
Student: Do Not Apply |Lover, Do Not Apply |Hater
University: Reject, Out-of-equilibrium beliefs: Prob(Hater |Apply) = 0.9 (pas-
sive conjectures)

The pooling equilibrium is supported by passive conjectures. Both types of students refrain
from applying because they believe correctly that they would be rejected and receive a
payoff of −1; and the university is willing to reject any student who foolishly applied,
believing that he is a Hater with 90 percent probability.

Because the perfect bayesian equilibrium concept imposes no restrictions on out-of-
equilibrium beliefs, economists have come up with a variety of exotic refinements of the
equilibrium concept. Let us consider whether various alternatives to passive conjectures
would support the pooling equilibrium in PhD Admissions.

Passive Conjectures. Prob(Hater|Apply) = 0.9

This is the belief specified above, under which out-of-equilibrium behavior leaves beliefs
unchanged from the prior. The argument for passive conjectures is that the student’s
application is a mistake, and that both types are equally likely to make mistakes, although
Haters are more common in the population. This supports the pooling equilibrium.

The Intuitive Criterion. Prob(Hater|Apply) = 0

Under the Intuitive Criterion of Cho & Kreps (1987), if there is a type of informed
player who could not benefit from the out-of-equilibrium action no matter what beliefs were
held by the uninformed player, the uninformed player’s belief must put zero probability
on that type. Here, the Hater could not benefit from applying under any possible beliefs
of the university, so the university puts zero probability on an applicant being a Hater.
This argument will not support the pooling equilibrium, because if the university holds
this belief, it will want to admit anyone who applies.

Complete Robustness. Prob(Hater|Apply) = m, 0 ≤ m ≤ 1

Under this approach, the equilibrium strategy profile must consist of responses that are
best, given any and all out-of-equilibrium beliefs. Our equilibrium for Entry Deterrence II
satisfied this requirement. Complete robustness rules out a pooling equilibrium in the PhD
Admissions Game, because a belief like m = 0 makes accepting applicants a best response,
in which case only the Lover will apply. A useful first step in analyzing conjectured pooling
equilibria is to test whether they can be supported by extreme beliefs such as m = 0 and
m = 1.

An Ad Hoc Specification. Prob(Hater|Apply) = 1

Sometimes the modeller can justify beliefs by the circumstances of the particular game.
Here, one could argue that anyone so foolish as to apply knowing that the university would
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reject them could not possibly have the good taste to love economics. This supports the
pooling equilibrium also.

An alternative approach to the problem of out-of-equilibrium beliefs is to remove
its origin by building a model in which every outcome is possible in equilibrium because
different types of players take different equilibrium actions. In the PhD Admissions Game,
we could assume that there are a few students who both love economics and actually
enjoy writing applications. Those students would always apply in equilibrium, so there
would never be a pure pooling equilibrium in which nobody applied, and Bayes’ s Rule
could always be used. In equilibrium, the university would always accept someone who
applied, because applying is never out-of-equilibrium behavior and it always indicates that
the applicant is a Lover. This approach is especially attractive if the modeller takes the
possibility of trembles literally, instead of just using it as a technical tool.

The arguments for different kinds of beliefs can also be applied to Entry Deterrence III,
which had two different pooling equilibria and no separating equilibrium. We used passive
conjectures in the “plausible” equilibrium. The intuitive criterion would not restrict beliefs
at all, because both types would enter if the incumbent’s beliefs were such as to make him
collude, and both would stay out if they made him fight. Complete robustness would rule
out as an equilibrium the strategy profile in which the entrant stays out regardless of type,
because the optimality of staying out depends on the beliefs. It would support the strategy
profile in which the entrant enters and out-of-equilibrium beliefs do not matter.

6.3 The Importance of Common Knowledge: Entry Deterrence IV and V

To demonstrate the importance of common knowledge, let us consider two more versions
of Entry Deterrence. We will use passive conjectures in both. In Entry Deterrence III, the
incumbent was hurt by his ignorance. Entry Deterrence IV will show how he can benefit
from it, and Entry Deterrence V will show what can happen when the incumbent has the
same information as the entrant but the information is not common knowledge.

Entry Deterrence IV: The Incumbent Benefits from Ignorance

To construct Entry Deterrence IV, let X = 300 in Figure 1, so fighting is even more
profitable than in Entry Deterrence III but the game is otherwise the same: the entrant
knows his type, but the incumbent does not. The following is the unique perfect bayesian
equilibrium in pure strategies.1

Equilibrium for Entry Deterrence IV
Entrant: Stay Out |Weak, Stay Out |Strong
Incumbent: Fight, Out-of-equilibrium beliefs: Prob(Strong|Enter) = 0.5 (pas-
sive conjectures)

This equilibrium can be supported by other out-of-equilibrium beliefs, but no equilib-
rium is possible in which the entrant enters. There is no pooling equilibrium in which both

1There exists a plausible mixed-strategy equilibrium too: Entrant: Enter if Strong, Enter with proba-
bility m = 0.2 if Weak; Incumbent: Collude with probability n = 0.2. The payoff from this is only 150, so
if the equilibrium were one in mixed strategies, ignorance would not help.
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types of entrant enter, because then the incumbent’s expected payoff from Fight would be
150 (= 0.5[0] + 0.5[300]), which is greater than the Collude payoff of 50. There is no sep-
arating equilibrium, because if only the strong entrant entered and the incumbent always
colluded, the weak entrant would be tempted to imitate him and enter as well.

In Entry Deterrence IV, unlike Entry Deterrence III, the incumbent benefits from
his own ignorance, because he would always fight entry, even if the payoff were (unknown
to himself) just zero. The entrant would very much like to communicate the costliness of
fighting, but the incumbent would not believe him, so entry never occurs.

Entry Deterrence V: Lack of Common Knowledge of Ignorance

In Entry Deterrence V, it may happen that both the entrant and the incumbent know the
payoff from (Enter, Fight), but the entrant does not know whether the incumbent knows.
The information is known to both players, but is not common knowledge.

Figure 3 depicts this somewhat complicated situation. The game begins with Nature
assigning the entrant a type, Strong or Weak as before. This is observed by the entrant
but not by the incumbent. Next, Nature moves again and either tells the incumbent the
entrant’s type or remains silent. This is observed by the incumbent, but not by the entrant.
The four games starting at nodes G1 to G4 represent different profiles of payoffs from (Enter,
Fight) and knowledge of the incumbent. The entrant does not know how well informed the
incumbent is, so the entrant’s information partition is ({G1, G2}, {G3, G4}).
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Figure 3 Entry Deterrence V

Equilibrium for Entry Deterrence V
Entrant: Stay Out|Weak, Stay Out|Strong
Incumbent: Fight|Nature said “Weak”, Collude |Nature said “Strong”, Fight
|Nature said nothing, Out-of- equilibrium beliefs: Prob( Strong|Enter, Nature
said nothing) = 0.5 (passive conjectures)

Since the entrant puts a high probability on the incumbent not knowing, the entrant
should stay out, because the incumbent will fight for either of two reasons. With probability
0.9, Nature has said nothing and the incumbent calculates his expected payoff from Fight
to be 150, and with probability 0.05 (= 0.1[0.5]) Nature has told the incumbent that
the entrant is weak and the payoff from Fight is 300. Even if the entrant is strong and
Nature tells this to the incumbent, the entrant would choose Stay Out, because he does
not know that the incumbent knows, and his expected payoff from Enter would be −5
(= [0.9][−10] + 0.1[40]).

If it were common knowledge that the entrant was strong, the entrant would enter and
the incumbent would collude. If it is known by both players, but not common knowledge,

180



the entrant stays out, even though the incumbent would collude if he entered. Such is the
importance of common knowledge.

6.4 Incomplete Information in the Repeated Prisoner’s Dilemma: The Gang of
Four Model

Chapter 5 explored various ways to steer between the Scylla of the Chainstore Paradox
and the Charybdis of the Folk Theorem to find a resolution to the problem of repeated
games. In the end, uncertainty turned out to make little difference to the problem, but
incomplete information was left unexamined in Chapter 5. One might imagine that if the
players did not know each others’ types, the resulting confusion might allow cooperation.
Let us investigate this by adding incomplete information to the finitely repeated Prisoner’s
Dilemma (whose payoffs are repeated in Table 1) and finding the perfect bayesian equilibria.

Table 1: The Prisoner’s Dilemma

Column
Silence Blame

Silence 5,5 -5,10
Row:

Blame 10,-5 0,0
Payoffs to: (Row,Column)

One way to incorporate incomplete information would be to assume that a large num-
ber of players are irrational, but that a given player does not know whether any other player
is of the irrational type or not. In this vein, one might assume that with high probability
Row is a player who blindly follows the strategy of Tit-for-Tat. If Column thinks he is
playing against a Tit-for-Tat player, his optimal strategy is to Silence until near the last
period (how near depending on the parameters), and then Blame. If he were not certain of
this, but the probability were high that he faced a Tit-for-Tat player, Row would choose
that same strategy. Such a model begs the question, because it is not the incompleteness
of the information that drives the model, but the high probability that one player blindly
uses Tit-for- Tat. Tit-for- Tat is not a rational strategy, and to assume that many players
use it is to assume away the problem. A more surprising result is that a small amount of
incomplete information can make a big difference to the outcome.2

The Gang of Four Model

One of the most important explanations of reputation is that of Kreps, Milgrom, Roberts
& Wilson (1982), hereafter referred to as the Gang of Four. In their model, a few players
are genuinely unable to play any strategy but Tit-for-Tat, and many players pretend to
be of that type. The beauty of the model is that it requires only a small amount of
incomplete information, and a low probability γ that player Row is a Tit-for-Tat player.

2Begging the question is not as illegitimate in modelling as in rhetoric, however, because it may indicate
that the question is a vacuous one in the first place. If the payoffs of the Prisoner’s Dilemma are not those
of most of the people one is trying to model, the Chainstore Paradox becomes irrelevant.

181



It is not unreasonable to suppose that the world contains a few mildly irrational tit-for-tat
players, and such behavior is especially plausible among consumers, who are subject to less
evolutionary pressure than firms.

It may even be misleading to call Tit-for-Tat “irrational”, because they may just have
unusual payoffs, particularly since we will assume that they are rare. The unusual players
have a small direct influence, but they matter because other players imitate them. Even if
Column knows that with high probability Row is just pretending to be a Tit-for-Tat player,
Column does not care what the truth is so long as Row keeps on pretending. Hypocrisy is
not only the tribute vice pays to virtue; it can be just as good for deterring misbehavior.

Theorem 6.1: The Gang of Four Theorem
Consider a T-stage, repeated Prisoner’s Dilemma, without discounting but with a probability
γ of a Tit-for-Tat player. In any perfect bayesian equilibrium, the number of stages in which
either player chooses Blame is less than some number M that depends on γ but not on T.

The significance of the Gang of Four theorem is that while the players do resort to
Blame as the last period approaches, the number of periods during which they Blame is
independent of the total number of periods. Suppose M = 2, 500. If T = 2, 500, there might
be Blame every period. But if T = 10, 000, there are 7,500 periods without a Blame move.
For reasonable probabilities of the unusual type, the number of periods of cooperation can
be much larger. Wilson (unpublished) has set up an entry deterrence model in which the
incumbent fights entry (the equivalent of Silence above) up to seven periods from the end,
although the probability the entrant is of the unusual type is only 0.008.

The Gang of Four Theorem characterizes the equilibrium outcome rather than the
equilibrium. Finding perfect bayesian equilibria is difficult and tedious, since the modeller
must check all the out-of-equilibrium subgames, as well as the equilibrium path. Modellers
usually content themselves with describing important characteristics of the equilibrium
strategies and payoffs.

To get a feeling for why Theorem 6.1 is correct, consider what would happen in a
10,001 period game with a probability of 0.01 that Row is playing the Grim Strategy of
Silence until the first Blame, and Blame every period thereafter. Using Table 1’s payoffs,
a best response for Column to a known Grim player is (Blame only in the last period,
unless Row chooses Blame first, in which case respond with Blame). Both players will
choose Silence until the last period, and Column’s payoff will be 50,010 (= (10,000)(5) +
10). Suppose for the moment that if Row is not Grim, he is highly aggressive, and will
choose Blame every period. If Column follows the strategy just described, the outcome
will be (Blame, Silence) in the first period and (Blame, Blame) thereafter, for a payoff to
Column of −5(= −5 + (10, 000)(0)). If the probabilities of the two outcomes are 0.01 and
0.99, Column’s expected payoff from the strategy described is 495.15. If instead he follows
a strategy of (Blame every period), his expected payoff is just 0.1 (= 0.01(10) + 0.99(0)).
It is clearly in Column’s advantage to take a chance by cooperating with Row, even if Row
has a 0.99 probability of following a very aggressive strategy.

The aggressive strategy, however, is not Row’s best response to Column’s strategy. A
better response is for Row to choose Silence until the second-to- last period, and then to
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choose Blame. Given that Column is cooperating in the early periods, Row will cooperate
also. This argument has not described what the Nash equilibrium actually is, since the
iteration back and forth between Row and Column can be continued, but it does show why
Column chooses Silence in the first period, which is the leverage the argument needs: the
payoff is so great if Row is actually the grim player that it is worthwhile for Column to risk
a low payoff for one period.

The Gang of Four Theorem provides a way out of the Chainstore Paradox, but it
creates a problem of multiple equilibria in much the same way as the infinitely repeated
game. For one thing, if the asymmetry is two-sided, so both players might be unusual
types, it becomes much less clear what happens in threat games such as Entry Deterrence.
Also, what happens depends on which unusual behaviors have positive, if small, probability.
Theorem 6.2 says that the modeller can make the average payoffs take any particular values
by making the game last long enough and choosing the form of the irrationality carefully.

Theorem 6.2: The Incomplete Information Folk Theorem(Fudenberg & Maskin
[1986] p. 547)
For any two-person repeated game without discounting, the modeller can choose a form of
irrationality so that for any probability ε > 0 there is some finite number of repetitions such
that with probability (1− ε) a player is rational and the average payoffs in some sequential
equilibrium are closer than ε to any desired payoffs greater than the minimax payoffs.

6.5 The Axelrod Tournament

Another way to approach the repeated Prisoner’s Dilemma is through experiments, such
as the round robin tournament described by political scientist Robert Axelrod in his 1984
book. Contestants submitted strategies for a 200-repetition Prisoner’s Dilemma . Since
the strategies could not be updated during play, players could precommit, but the strategies
could be as complicated as they wished. If a player wanted to specify a strategy which
simulated subgame perfectness by adapting to past history just as a noncommitted player
would, he was free to do so, but he could also submit a non-perfect strategy such as Tit-for-
Tat or the slightly more forgiving Tit-for-Two-Tats. Strategies were submitted in the form
of computer programs that were matched with each other and played automatically. In
Axelrod’s first tournament, 14 programs were submitted as entries. Every program played
every other program, and the winner was the one with the greatest sum of payoffs over all
the plays. The winner was Anatol Rapoport, whose strategy was Tit-for-Tat.

The tournament helps to show which strategies are robust against a variety of other
strategies in a game with given parameters. It is quite different from trying to find a
Nash equilibrium, because it is not common knowledge what the equilibrium is in such a
tournament. The situation could be viewed as a game of incomplete information in which
Nature chooses the number and cognitive abilities of the players and their priors regarding
each other.
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After the results of the first tournament were announced, Axelrod ran a second tourna-
ment, adding a probability θ = 0.00346 that the game would end each round so as to avoid
the Chainstore Paradox. The winner among the 62 entrants was again Anatol Rapoport,
and again he used Tit-for-Tat.

Before choosing his tournament strategy, Rapoport had written an entire book on
The Prisoner’s Dilemma in analysis, experiment, and simulation (Rapoport & Chammah
[1965]). Why did he choose such a simple strategy as Tit-for-Tat? Axelrod points out that
Tit-for-Tat has three strong points.

1. It never initiates blaming (niceness);

2. It retaliates instantly against blaming (provocability);

3. It forgives someone who plays Blame but then goes back to cooperating (it is for-
giving).

Despite these advantages, care must be taken in interpreting the results of the tourna-
ment. It does not follow that Tit-for-Tat is the best strategy, or that cooperative behavior
should always be expected in repeated games.

First, Tit-for-Tat never beats any other strategy in a one-on-one contest. It won the
tournament by piling up points through cooperation, having lots of high score plays and
very few low score plays. In an elimination tournament, Tit-for- Tat would be eliminated
very early, because it scores high payoffs but never the highest payoff.

Second, the other players’ strategies matter to the success of Tit-for-Tat. In neither
tournament were the strategies submitted a Nash equilibrium. If a player knew what strate-
gies he was facing, he would want to revise his own. Some of the strategies submitted in the
second tournament would have won the first, but they did poorly because the environment
had changed. Other programs, designed to try to probe the strategies of their opposition,
wasted too many (Blame, Blame) episodes on the learning process, but if the games had
lasted a thousand repetitions they would have done better.

Third, in a game in which players occasionally blamed because of trembles, two Tit-
for-Tat players facing each other would do very badly. The strategy instantly punishes a
blaming player, and it has no provision for ending the punishment phase.

Optimality depends on the environment. When information is complete and the payoffs
are all common knowledge, blaming is the only equilibrium outcome. In practically any
real-world setting, however, information is slightly incomplete, so cooperation becomes
more plausible. Tit-for-Tat is suboptimal for any given environment, but it is robust across
environments, and that is its advantage.
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6.6 Credit and the Age of the Firm: The Diamond Model

An example of another way to look at reputation is Diamond’s model of credit terms, which
seeks to explain why older firms get cheaper credit using a game similar to the Gang of Four
model. Telser (1966) suggested that predatory pricing would be a credible threat if the
incumbent had access to cheaper credit than the entrant, and so could hold out for more
periods of losses before going bankrupt. While one might wonder whether this is effective
protection against entry— what if the entrant is a large old firm from another industry?—
we shall focus on how better-established firms might get cheaper credit.

D. Diamond (1989) aims to explain why old firms are less likely than young firms to
default on debt. His model has both adverse selection, because firms differ in type, and
moral hazard, because they take hidden actions. The three types of firms, R, S, and RS,
are “born” at time zero and borrow to finance projects at the start of each of T periods. We
must imagine that there are overlapping generations of firms, so that at any point in time
a variety of ages are coexisting, but the model looks at the lifecycle of only one generation.
All the players are risk neutral. Type RS firms can choose independently risky projects with
negative expected values or safe projects with low but positive expected values. Although
the risky projects are worse in expectation, if they are successful the return is much higher
than from safe projects. Type R firms can only choose risky projects, and type S firms only
safe projects. At the end of each period the projects bring in their profits and loans are
repaid, after which new loans and projects are chosen for the next period. Lenders cannot
tell which project is chosen or what a firm’s current profits are, but they can seize the
firm’s assets if a loan is not repaid, which always happens if the risky project was chosen
and turned out unsuccessfully.

This game foreshadows two other models of credit that will be described in this book,
the Repossession Game of section 8.4 and the Stiglitz-Weiss model of section 9.6. Both will
be one-shot games in which the bank worried about not being repaid; in the Repossession
Game because the borrower did not exert enough effort, and in the Stiglitz-Weiss model
because he was of an undesirable type that could not repay. The Diamond model is a
mixture of adverse selection and moral hazard: the borrowers differ in type, but some
borrowers have a choice of action.

The equilibrium path has three parts. The RS firms start by choosing risky projects.
Their downside risk is limited by bankruptcy, but if the project is successful the firm keeps
large residual profits after repaying the loan. Over time, the number of firms with access
to the risky project (the RS’s and R’s) diminishes through bankruptcy, while the number
of S’s remains unchanged. Lenders can therefore maintain zero profits while lowering
their interest rates. When the interest rate falls, the value of a stream of safe investment
profits minus interest payments rises relative to the expected value of the few periods of
risky returns minus interest payments before bankruptcy. After the interest rate has fallen
enough, the second phase of the game begins when the RS firms switch to safe projects at
a period we will call t1. Only the tiny and diminishing group of type R firms continue to
choose risky projects. Since the lenders know that the RS firms switch, the interest rate
can fall sharply at t1. A firm that is older is less likely to be a type R, so it is charged a
lower interest rate. Figure 4 shows the path of the interest rate over time.
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Figure 4 The Interest Rate over Time

Towards period T , the value of future profits from safe projects declines and even with
a low interest rate the RS’s are again tempted to choose risky projects. They do not all
switch at once, however, unlike in period t1. In period t1, if a few RS’s had decided to
switch to safe projects, the lenders would have been willing to lower the interest rate, which
would have made switching even more attractive. If a few firms switch to risky projects
at some time t2, on the other hand, the interest rate rises and switching to risky projects
becomes more attractive— a result that will also be seen in the Lemons model in Chapter
9. Between t2 and t3, the RS’s follow a mixed strategy, an increasing number of them
choosing risky projects as time passes. The increasing proportion of risky projects causes
the interest rate to rise. At t3, the interest rate is high enough and the end of the game
is close enough that the RS’s revert to the pure strategy of choosing risky projects. The
interest rate declines during this last phase as the number of RS’s diminishes because of
failed risky projects.

One might ask, in the spirit of modelling by example, why the model contains three
types of firms rather than two. Types S and RS are clearly needed, but why type R? The
little extra detail in the game description allows simplification of the equilibrium, because
with three types bankruptcy is never out-of-equilibrium behaviour, since the failing firm
might be a type R. Bayes’s Rule can therefore always be applied, elminating the problem
of ruling out peculiar beliefs and absurd perfect bayesian equilibria.

This is a Gang of Four model but differs from previous examples in an important
respect: the Diamond model is not stationary, and as time progresses, some firms of types
R and RS go bankrupt, which changes the lenders’ payoff functions. Thus, it is not, strictly
speaking, a repeated game.
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Notes

N6.1 Perfect Bayesian Equilibrium: Entry Deterrence I and II

• Section 4.1 showed that even in games of perfect information, not every subgame perfect
equilibrium is trembling-hand perfect. In games of perfect information, however, every
subgame perfect equilibrium is a perfect bayesian equilibrium, since no out-of-equilibrium
beliefs need to be specified.

N6.2 Refining Perfect Bayesian Equilibrium: The PhD Admissions Game

• Fudenberg & Tirole (1991b) is a careful analysis of the issues involved in defining perfect
bayesian equilibrium.

• Section 6.2 is about debatable ways of restricting beliefs such as passive conjectures or
equilibrium dominance, but less controversial restrictions are sometimes useful. In a three-
player game, consider what happens when Smith and Jones have incomplete information
about Brown, and then Jones deviates. If it was Brown himself who had deviated, one
might think that the other players might deduce something about Brown’s type. But
should they update their priors on Brown because Jones has deviated? Especially, should
Jones updated his beliefs, just because he himself deviated? Passive conjectures seems much
more reasonable.

If, to take a second possibility, Brown himself does deviate, is it reasonable for the out-
of-equilibrium beliefs to specify that Smith and Jones update their beliefs about Brown in
different ways? This seems dubious in light of the Harsanyi doctrine that everyone begins
with the same priors.

On the other hand, consider a tremble interpretation of out-of- equilibrium moves. Maybe if
Jones trembles and picks the wrong strategy, that really does say something about Brown’s
type. Jones might tremble more often, for example, if Brown’s type is strong than if it
is weak. Jones himself might learn from his own trembles. Once we are in the realm of
non-bayesian beliefs, it is hard to know what to do without a real-world context.

Dominance and tremble arguments used to rule out Nash equilibria apply to past, present
(in simultaneous move games), and future actions of the other player. Belief arguments only
depend on past actions, because they rely on the uninformed player observing behavior and
interpreting it. Thus, for example, a tremble or weak dominance argument might say a
player should take action 1 instead of 2 because although their payoffs are equal, action 2
would lead to a very low payoff if the other player later trembled and chose an unintended
action that hurt both of them. An argument based on beliefs would not work in such a
game.

• For discussions of the appropriateness of different equilibrium concepts in actual economic
models see Rubinstein (1985b) on bargaining, Shleifer & Vishny (1986) on greenmail and
D. Hirshleifer & Titman (1990) on tender offers.

• Exotic refinements. Binmore (1990) and Kreps (1990b) are booklength treatments of
rationality and equilibrium concepts. Van Damme (1989) introduces the curious “money
burning” idea of “forward induction.”

• The Beer-Quiche Game of Cho & Kreps (1987). To illustrate their “intuitive criterion”,
Cho and Kreps use the Beer-Quiche Game. In this game, Player I might be either weak or
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strong in his duelling ability, but he wishes to avoid a duel even if he thinks he can win.
Player II wishes to fight a duel only if player I is weak, which has a probability of 0.1.
Player II does not know player I’s type, but he observes what player I has for breakfast. He
knows that weak players prefer quiche for breakast, while strong players prefer beer. The
payoffs are shown in Figure 5.

Figure 5 illustrates a few twists on how to draw an extensive form. It begins with Nature’s
choice of Strong or Weak in the middle of the diagram. Player I then chooses whether to
breakfast on beer or quiche. Player II’s nodes are connected by a dotted line if they are in
the same information set. Player II chooses Duel or Don′t, and payoffs are then received.

Figure 5 The Beer-Quiche Game

This game has two perfect bayesian equilibrium outcomes, both of which are pooling. In
E1, player I has beer for breakfast regardless of type, and Player II chooses not to duel.
This is supported by the out-of-equilibrium belief that a quiche-eating player I is weak with
probability over 0.5, in which case player II would choose to duel on observing quiche. In
E2, player I has quiche for breakfast regardless of type, and player II chooses not to duel.
This is supported by the out-of-equilibrium belief that a beer-drinking player I is weak with
probability greater than 0.5, in which case player II would choose to duel on observing beer.

Passive conjectures and the intuitive criterion both rule out equilibrium E2. According to
the reasoning of the intuitive criterion, player I could deviate without fear of a duel by
giving the following convincing speech,

I am having beer for breakfast, which ought to convince you I am strong.
The only conceivable benefit to me of breakfasting on beer comes if I am strong.
I would never wish to have beer for breakfast if I were weak, but if I am strong
and this message is convincing, then I benefit from having beer for breakfast.

N6.5 The Axelrod tournament
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• Hofstadter (1983) is a nice discussion of the Prisoner’s Dilemma and the Axelrod tour-
nament by an intelligent computer scientist who came to the subject untouched by the
preconceptions or training of economics. It is useful for elementary economics classes. Ax-
elrod’s 1984 book provides a fuller treatment.
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Problems

6.1. Cournot Duopoly under Incomplete Information about Costs (hard)
This problem introduces incomplete information into the Cournot model of Chapter 3 and allows
for a continuum of player types.

(a) Modify the Cournot Game of Chapter 3 by specifying that Apex’s average cost of production
be c per unit, while Brydox’s remains zero. What are the outputs of each firm if the costs
are common knowledge? What are the numerical values if c = 10?

(b) Let Apex’s cost c be cmax with probability θ and 0 with probability 1 − θ, so Apex is one
of two types. Brydox does not know Apex’s type. What are the outputs of each firm?

(c) Let Apex’s cost c be drawn from the interval [0, cmax] using the uniform distribution, so
there is a continuum of types. Brydox does not know Apex’s type. What are the outputs
of each firm?

(d) Outputs were 40 for each firm in the zero-cost game in chapter 3. Check your answers in
parts (b) and (c) by seeing what happens if cmax = 0.

(e) Let cmax = 20 and θ = 0.5, so the expectation of Apex’s average cost is 10 in parts (a), (b),
and (c). What are the average outputs for Apex in each case?

(f) Modify the model of part (b) so that cmax = 20 and θ = 0.5, but somehow c = 30. What
outputs do your formulas from part (b) generate? Is there anything this could sensibly
model?

Problem 6.2. Limit Pricing (medium) (see Milgrom and Roberts [1982a])
An incumbent firm operates in the local computer market, which is a natural monopoly in which
only one firm can survive. The incumbent knows his own operating cost c, which is 20 with
probability 0.2 and 30 with probability 0.8.

In the first period, the incumbent can price Low, losing 40 in profits, or High, losing nothing
if his cost is c = 20. If his cost is c = 30, however, then pricing Low he loses 180 in profits. (You
might imagine that all consumers have a reservation price that is High, so a static monopolist
would choose that price whether marginal cost was 20 or 30.)

A potential entrant knows those probabilities, but not the incumbent’s exact cost. In the
second period, the entrant can enter at a cost of 70, and his operating cost of 25 is common
knowledge. If there are two firms in the market, each incurs an immediate loss of 50, but one
then drops out and the survivor earns the monopoly revenue of 200 and pays his operating cost.
There is no discounting: r = 0.

(a) In a perfect bayesian equilibrium in which the incumbent prices High regardless of its costs
(a pooling equilibrium), about what do out-of- equilibrium beliefs have to be specified?

(b) Find a pooling perfect bayesian equilibrium, in which the incumbent always chooses the
same price no matter what his costs may be.

(c) What is a set of out-of-equilibrium beliefs that do not support a pooling equilibrium at a
High price?
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(d) What is a separating equilibrium for this game?

6.3. Symmetric Information and Prior Beliefs (medium)
In the Expensive-Talk Game of Table 2, the Battle of the Sexes is preceded by by a communication
move in which the man chooses Silence or Talk. Talk costs 1 payoff unit, and consists of a
declaration by the man that he is going to the prize fight. This declaration is just talk; it is not
binding on him.

Table 2: Subgame Payoffs in the Expensive-Talk Game

Woman
Fight Ballet

F ight 3,1 0, 0
Man:

Ballet 0, 0 1,3
Payoffs to: (Man, Woman)

(a) Draw the extensive form for this game, putting the man’s move first in the simultaneous-
move subgame.

(b) What are the strategy sets for the game? (Start with the woman’s.)

(c) What are the three perfect pure-strategy equilibrium outcomes in terms of observed actions?
(Remember: strategies are not the same thing as outcomes.)

(d) Describe the equilibrium strategies for a perfect equilibrium in which the man chooses to
talk.

(e) The idea of “forward induction” says that an equilibrium should remain an equilibrium even
if strategies dominated in that equilibrium are removed from the game and the procedure
is iterated. Show that this procedure rules out SBB as an equilibrium outcome.(See Van
Damme [1989]. In fact, this procedure rules out TFF (Talk, Fight, Fight) also.)

6.4. Lack of Common Knowledge (medium)
This problem looks at what happens if the parameter values in Entry Deterrence V are changed.

(a) Why does Pr(Strong|Enter, Nature said nothing) = 0.95 not support the equilibrium in
Section 6.3?

(b) Why is the equilibrium in Section 6.3 not an equilibrium if 0.7 is the probability that Nature
tells the incumbent?

(c) Describe the equilibrium if 0.7 is the probability that Nature tells the incumbent. For what
out-of-equilibrium beliefs does this remain the equilibrium?
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The Repeated Prisoner’s Dilemma under Incomplete Information: A Classroom
Game for Chapter 6

Consider the Prisoner’s Dilemma in Table 3, obtained by adding 8 to each payoff in Chapter
1’s Table 2, and identical to Chapter 5’s Table 10:

Table 3: The Prisoner’s Dilemma

Column
Silence Blame

Silence 7,7 → -2, 8
Row ↓ ↓

Blame 8,-2 → 0,0
Payoffs to: (Row,Column)

This game will be repeated five times, and your objective is to get as high a summed,
undiscounted, payoff as possible (not just to get a higher summed payoff than anybody else).
Remember, too, that there are lots of pairing of Row and Column in the class, so to just beat
your immediate opponent would not even be the right tournament strategy.

The instructor will form groups of three students each to represent Row, and groups of one
student each to represent Column. Each Row group will play against multiple Columns.

The five-repetition games will be different in how Column behaves.

Game (i) Complete Information: Column will seek to maximize his payoff according to Table 3.

Game (ii) 80% Tit-for-Tat: With 20% probability, Column will seek to maximize his payoff
according to Table 3. With 80% probability, Column is a “Tit-for- Tat Player” and must use the
strategy of “Tit-for-Tat,” starting with Silence in Round 1 and after that imitating what Row
did in the previous round.

Game (iii) 10% Tit-for-Tat: With 90% probability, Column will seek to maximize his payoff
according to Table 3. With 10% probability, Column is a “Tit-for-Tat Player” and must use the
strategy of “Tit-for-Tat,” starting with Silence in Round 1 and after that imitating what Row
did in the previous round. The identities of the Game (ii).

The probabilities are independent, so although in Game(ii) the most likely outcome is that
8 of 10 Column players use tit-for-tat, it is possible that 7 or 9 do, or even (improbably) 0 or 10.
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