How To Use Latex

February 23, 2011. Http://rasmusen.org/a/latex-sample.tex,http://rasmusen.org/a/latexsample.pdf.

8.1: Discounting

$\frac{1}{1+r}=\$ 9,100$ at 10% interest. Bond A pays out $\$ 10,000$ plus inflation of $\pi .{ }^{1}$ To process this file, first go to http://miktex.org/ and set up the free Miktex program on your computer. That's easy. Then, figure out how to issue a command to miktex saying "pdflatex latex-sample.tex". That could be hard, because of figuring out what directories files have to be in, how to get a DOS shell in which to issue the command, so forth, but the Miktex directions will help. That command will turn the *.tex file into a prettylooking *.pdf file. Look at the latex-sample.pdf file and see if it looks good. If it doesn't, change the commands in the latex-sample.tex file and re-run it. If you mess up and forget brackets or write latex commands with typos, then Miktex will stop midway with an error message telling you what line has a mistake. See also: http://rasmusen.org/a/latex-rasmusen.pdf and http://rasmusen.org/g492/latex-example.tex,http://rasmusen.org/g492/latexexample.pdf (which is like this page, but with some fancier commands such as for tables).

Here is an equation:

$$
\begin{equation*}
M S E_{\text {exact }}=\int_{0}^{2 c}\left(q_{1}-c\right)^{2}(1) d q+\int_{2 c}^{1}(\alpha-q)^{2}(1) d q=\frac{2 \Sigma}{3} c^{3} . \tag{1}
\end{equation*}
$$

But the next one has no number even though it is indented:

$$
\exists \bar{D} f(x)=\underset{h \rightarrow 0}{\limsup } \frac{f\left(x_{2}+h^{3}\right)-f(x)}{\sqrt{h_{23}}} .
$$

Kannai, Yakar (1977) "Concavifiability and Constructions of Concave Utility Functions," Journal of Mathematical Economics, 4: 1-56.

```
If you don't want Latex to format for you,
    use verbatim as I do here.
                            Column 1 Column 2
Row 1 345 2444
Row 2 45 44444
```

[^0]
[^0]: ${ }^{1}$ Note that \forall quasi-concave $f: X \rightarrow L^{1}$, we let $m \in X$ denotes the point at which f is maximized.

