
Back to Bargaining Basics:
A Breakdown Model for Splitting a Pie

February 29, 2020

Eric Rasmusen

Abstract

Nash (1950) and Rubinstein (1982) give two different justifications for a

50-50 split of surplus in bargaining with two player. Nash’s axioms extend to

n players, but no non-cooperative game theory model of n-person bargaining

has become standard. I offer a simple static model that reaches a 50-50 split

(or 1/n) as the unique equilibrium. Each player chooses a “toughness level”

simultaneously, but greater toughness always generates a risk of breakdown.

Introducing asymmetry, a player who is more risk averse gets a smaller share

in equilibrium. “Bargaining strength” can also be parameterized to yield an

asymmetric split. The model can be extended by making breakdown mere

delay, in which case it resembles Rubinstein (1982) but with an exact 50-50

split and delay in equilibrium. The model only needs minimal assumptions

on breakdown probability and pie division as functions of toughness. Its

intuition is simple: whoever has a bigger share loses more from breakdown

and hence has less incentive to be tough.
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1. Introduction

Bargaining shows up as part of so many models in economics that

it’s especially useful to have simple models of it with the properties

appropriate for the particular context. Often, the modeller wants the

simplest model possible, because the outcome doesn’t matter to his

question of interest, so he assumes one player makes a take-it-or-leave

it offer and the equilibrium is that the other player accepts the offer.

Or, if it matters that both players receive some surplus (for example,

if the modeller wishes to give both players some incentive to make

relationship-specific investments, the modeller chooses to have the sur-

plus split 50-50. This can be done as a “black box” reduced form.

Or, it can be taken as the unique symmetric equilibrium and the focal

point in the “Splitting a Pie” game (also called “Divide the Dollar”),

in which both players simultaneously propose a surplus split and if

their proposals add up to more than 100% they both get zero. The

caveats “symmetric” and “focal point” need to be applied because this

game, the most natural way to model bargaining, has a continuum

of equilibria, including not only 50-50, but 70-30, 80-20, 50.55-49.45,

and so forth. Moreover, it is a large infinity of equilibria: as shown in

Malueg (2010) and Connell & Rasmusen (2018), there are also continua

of mixed-strategy equilibria such as the Hawk-Dove equilibria (both

players mixing between 30 and 70), more complex symmetric discrete

mixed-strategy equilibria (both players mixing between 30, 40, 60, and

70), asymmetric discrete mixed-strategy equilibria (one player mixing

between 30 and 40, and the other mixing betwen 60 and 70), and con-

tinuous mixed-strategy equilibria (both players mixing over the interval

[30, 70]).

Commonly, though, modellers cite to Nash (1950) or Rubinstein

(1982), which do have unique equilibria. On Google Scholar these two

papers had 9,067 and 6,343 cites as of September 6, 2018. The Nash

model is the entire subject of Chapter 1 and the Rubinstein model

is the entire subject of Chapter 2 of the best-known books on bar-

gaining, Martin Osborne and Ariel Rubinstein’s 1990 Bargaining and
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Markets and Abhinay Muthoo’s 1999 Bargaining Theory with Applica-

tions (though, to be sure, my own treatment in Chapter 12 of Games

and Information is organized somewhat differently).

Nash (1950) finds a unique 50-50 split using four axioms. Effi-

ciency says that the solution is pareto optimal, so the players cannot

both be made better off by any change. Anonymity (or Symmetry)

says that switching the labels on players 1 and 2 does not affect the

solution. Invariance says that the solution is independent of the units

in which utility is measured. Independence of Irrelevant Alternatives

says that if we drop some possible pie divisions as possibilities, but

not the equilibrium division, the division that we call the equilibrium

does not change. For Splitting a Pie, only Efficiency and Symmetry are

needed to for 50-50 to be the unique equilibrium when the players have

the same utility functions. The other two axioms handle situations

where the utility frontier is not u1 = 1 − u2, i.e., the diagonal from

(0,1) to (1,0). Essentially, they handle it by relabelling the pie division

as being from player 1 getting 100% of his potential maximum utility

and player 2 getting 0% to the opposite, where player 2 gets 100%.

Rubinstein (1982) obtains the 50-50 split differently. Nash’s equi-

librium is in the style of cooperative games, and shows what the equi-

librium will be if we think it will be efficient and symmetric. The “Nash

program” as described in Binmore (1980, 1985) is to give noncoopera-

tive microfoundations for the 50-50 split, to show the tradeoffs players

make that reaches that result. Rubinstein (1982) is the great success

of the Nash program. Each player in turn proposes a split of the pie,

with the other player responding with accept or reject. If the response

is to reject, the pie’s value shrinks according to the discount rates of

the players. This is a game of complete information with an infinite

number of possible rounds. In the unique subgame perfect equilibrium,

the first player proposes a split giving slightly more than 50% to him-

self, and the other player accepts, knowing that if he rejects and waits

to the second period so he has the advantage of being the proposer,

the pie will have shrunk, so it is not worth waiting. If one player is
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more impatient, that player’s equilibrium share is smaller. Thus, the

tradeoff is between accepting the other player’s offer now, or incurring

a time cost of waiting to make one’s own, more advantageous offer—

but knowing that the alternation could continue forever.

The present paper illustrates a different tradeoff, where being

tougher has the advantage of giving a bigger share if successful but the

disadvantage of being more likely to cause breakdown in negotiations.

We will see this in a model that will be be noncooperative like Rubin-

stein’s but like Nash’s will leave important assumptions unexplained—

here, why being tougher increases one’s share of the pie and the prob-

ability of breakdown. This will allow for a very simple model, in the

hope that the occasional reversal of the usual movement over time from

less to more complex models may be welcome to some readers.

The significance of endogenous breakdown is that it imposes a

continuous cost on a player who chooses to be tougher. In Rubinstein

(1982), the proposer’s marginal cost of toughness is zero as he proposes

a bigger and bigger share for himself up until the point where the other

player would reject his offer—where the marginal cost becomes infinite.

In the model here, the marginal cost of toughness will be the increase

in the probability of breakdown times the share that is lost, so a player

cannot become tougher without positive marginal cost. Since “the

share that is lost” is part of the marginal cost, that cost will be higher

for the player with the bigger share. This implies that if the player with

the bigger share is indifferent about being tougher, the other player will

have a lower marginal cost of being tougher and will not be indifferent.

As a result, a Nash equilibrium will require that both players have the

same share.

Further Comments on the Literature

In Rubinstein (1982), the player always reach immediate agree-

ment. That is because he interprets the discount rate as time prefer-

ence, but another way to interpret it— if both players have the same

discount rate and are risk neutral— is as an exogenous probability of
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complete bargaining breakdown. Or, risk aversion can replace discount-

ing in an alternating-offers model, in which case the more risk-averse

player will receive a smaller share in equilibrium. Binmore, Rubinstein

& Wolinsky (1986) and Chapter 4 of Muthoo (2000) explore these pos-

sibilities. If there is an exogenous probability that negotiations break

down and cannot resume, so the surplus is forever lost, then even if the

players are infinitely patient they will want to reach agreement quickly

to avoid the possibility of losing the pie entirely. Especially when this

assumption is made, the idea in Shaked and Sutton (1984) of looking

at the “outside options” of the two players becomes important. These

models still do not result in delay in equilibrium, but one approach

that does is to look at bargaining as a war of attrition, as in Abreu &

Gul (2000). They assume a small possibility that a player is of an ex-

ogenously bull-headed type who will not back down, in which case the

normal, rational, type of player uses a mixed strategy to decide when

to concede, and agreement might occur only after delay. This sounds

closer to the literature on bargaining under incomplete information,

but is close to complete information because it assumes only a small

probability of a player type being of a special type. The equivalent

in their model of the current paper’s “toughness” is the probability of

continuing delay rather than conceding to the other player.

There have also been efforts to justify the Nash bargaining solution

as the result of the risk of breakdown. Roth (1979) models bargain-

ing as two single-player decisions problems, where each player chooses

a share that maximizes his expected utility under a particular belief

about the share proposed by the other player. This attains the prod-

uct solution, but the two players’ beliefs are inconsistent. Bastianello

& LiCalzi (2019) use a model in which a mediator chooses shares x

and 1− x that maximizes the probability those shares are accepted by

both players where the probability a player accepts is increasing in his

share. Thus, the possibility of breakdown is driving the solution, but

the focus is on justifying the product solution and extending the idea to

other axiomatic bargaining solutions rather than modelling breakdown

as an equilibrium phenomenon.
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Another approach to bargaining is to return to the one-shot game

but change the structure of the breakdown or payoff functions. Nash

(1953), in his second paper on bargaining, adds precommitment to a

mixed-strategy threat players use if their initial bids add up to more

than one, and finds a 50-50 split as the limit of continuous approxi-

mations of the breakdown function. In Binmore (1987) and Carlsson

(1991), players have positive probability of making errors in announc-

ing their bids. In Anbarci (2001), the sharing rule says that when the

bids add up to more than one, the player with the larger bid’s share is

scaled back the most.

2. The Model

Players 1 and 2 are splitting a pie of size 1. Each simultaneously

chooses a toughness level xi in [0,∞). With probability p(x1, x2), bar-

gaining fails and each ends up with a payoff of zero. Otherwise, player

1 receives π(x1, x2) and Player 2 receives 1 − π(x1, x2). For conve-

nience, we will assume there is an arbitrarily small fixed cost of effort

for toughness greater than zero so a player will prefer a toughness of

zero to toughness high enough to cause breakdown with probability

one. I will omit that infinitesimal from the payoff equations.

Example 1: The Basics. Let p(x1, x2) = Min{x1+x2
12

, 1} and π(x1, x2) =
x1

x1+x2
(with π = .5 if x1 = x2 = 0). The payoff functions are

Payoff 1 = p·(0)+(1−p)π = (1−x1 + x2
12

)
x1

x1 + x2
=

x1
x1 + x2

− x1
12

(1)

and

Payoff 2 = p·(0)+(1−p)(1−π) = (1−x1 + x2
12

)(1− x1
x1 + x2

) =
x2

x1 + x2
−x2

12

Maximizing equation (1) with respect to x1, Player 1’s first order

condition is

∂Payoff 1

∂x1
=

1

x1 + x2
− x1

(x1 + x2)2
− 1/12 = 0
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so x1 + x2 − x1 − (x1+x2)2

12
= 0 and 12x2 − (x1 + x2)

2 = 0. Player 1’s

reaction curve is

x1 = 2
√

3
√
x2 − x2,

as shown in Figure 1.

Solving with x1 = x2 = x we obtain x = 3 in the unique Nash

equilibrium, with no need to apply the refinement of subgame per-

fectness. The pie is split equally, and the probability of breakdown is

p = 3
3+3

= 50%.

Note that the infinitesimal fixed cost of effort rules out uninterest-

ing breakdown equilibria such as (x1 = 13, x2 = 13) or (x1 = ∞, x2 =

13).

Figure 1:

Reaction Curves for Toughnesses x1 and x2 in Example 1

x1 (x2 ) 2 3 x2 - x2

x2 (x1 ) 2 3 x1 - x1

0 1 2 3 4
x10

1

2

3

4
x2

In Example 1, the particular breakdown function p leads to a

very high equilibrium probability of breakdown— 50%. The model

retains its key features, however, even if the equilibrium probability of

breakdown is made arbitrarily small by choice of a breakdown function

with sufficiently great marginal increases in breakdown as toughness

increases. Example 2 shows how that works.
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Example 2: A Vanishingly Small Probability of Breakdown.

Keep π(x1, x2) = x1
x1+x2

as in Example 1, but let the breakdown proba-

bility be p(x1, x2) = (x1+x2)k

12k
for k to be chosen. We want an equilibrium

maximizing

Payoff 1 = p(0) + (1− p)π

= (1− (x1+x2)k

12k
) x1
x1+x2

= x1
x1+x2

− x1(x1+x2)k−1

12k

The first order condition is

1

x1 + x2
− x1

(x1 + x2)2
− x1(k − 1)(x1 + x2)

k−2/12k − (x1 + x2)
k−1

12k
= 0

so 12k(x1 + x2)− 12kx1 − x1(k − 1)(x1 + x2)
k − (x1 + x2)

k+1 = 0 and

12kx2 − x1(k − 1)(x1 + x2)
k − (x1 + x2)

k+1 = 0. Player 2’s payoff

functions is

Payoff(2) = (1− (x1 + x2)
k

12k
)(1− x1

x1 + x2
) =

x2
x1 + x2

−x2(x1 + x2)
k−1

12k

The equilibrium is symmetric, so we can solve 12kx−x(k−1)(2x)k−
(2x)k+1 = 0 to get x = (12k(2

−k)
k+1

)1/k, and

x∗ = .5(
12k

k + 1
)1/k

If k = 1 then x∗ = (12(2
−1)
2

)1 = 3, and p = 6
12

= .5, as in Example

1. If k = 2 then x∗ ≈ 1.4 and p = 1/3. If k = 5 then x∗ ≈ .79

and p ≈ .17. This converges to x∗ = .5 as k becomes large. Since

the probability of breakdown is p(x1, x2) = (x1+x2)k

12k
, the probability of

breakdown p = 1
k+1

which approaches 0 as k increases.

Thus, it is possible to construct a variant of the model in which

the probability of breakdown approaches zero, but we retain the other

features, including the unique 50-50 split of the surplus. Note that it

is also possible to construct a variant with the equilibrium probability
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of breakdown approaching one, by using a breakdown probability func-

tion with a very low marginal probability of breakdown as toughness

increases.

Having seen equal shares in two examples, let us now build a

more general model. Let the probability of bargaining breakdown be

p(x1, x2), let player 1’s share of the pie be π(x1, x2). Let us add an

effort cost c(xi) for player i, with c ≥ 0, dc
dxi
≥ 0, d

2c
dx2i
≥ 0. Assume that

player i prefers a lower value of xi to a higher one if the payoffs are

equal, even if c = 0. The players have identical (for now) quasilinear

utility functions and are possibly risk averse: u(1) = u(π)− c(x1) and

u(2) = u(1 − π) − c(x2) with u′ > 0 and u′′ ≤ 0 and normalized to

u(0) ≡ 0.

We will assume that the breakdown probability, p(x1, x2), has
∂p
∂x1

> 0, ∂p
∂x2

> 0, ∂2p
∂x21
≥ 0, ∂2p

∂x22
≥ 0, and ∂2p

∂x1∂x2
≥ 0 for all values

of x1, x2 such that p < 1. The probability of breakdown rises with

each player’s toughness, but with diminishing returns until it reaches

1. Also, assume that p(a, b) = p(b, a), which is to say that the break-

down probability does not depend on the identity of the players, just

the combination of toughnesses they choose.

We will assume that player 1’s share of the pie, π(x1, x2) ∈ [0, 1],

has ∂π
∂x1

> 0, ∂π
∂x2

< 0, ∂2π
∂x21
≤ 0, ∂2π

∂x22
≥ 0. We will also assume that

∂2π
∂x1∂x2

≤ 0 if x1 ≤ x2 and ∂2π
∂x1∂x2

≥ 0 if x1 ≥ x2. A player’s share (π for

player 1, (1−π) for player 2) rises with his toughness, with diminishing

returns; and the other player’s toughness reduces his marginal return

if he is the least tough of the two. Also, π(a, b) = 1− π(b, a), which is

to say that if one player chooses a and the other chooses b, the share

of the player choosing a does not depend on whether he is player 1 or

player 2. The function π = x1
x1+x2

used in Example 1 satisfies these

assumptions.

The assumptions on π imply that limx1→∞
∂π
∂x1
→ 0, since ∂π

∂x1
> 0,

∂2π
∂x21
≤ 0, and π ≤ 1; as x1 grows, if its marginal effect on π is constant
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then p will hit the ultimate level π = 1 eventually and for higher x1 we

would have ∂π
∂x1

= 0, but if the marginal effect on π diminishes, it must

diminish to zero (and similarly for x2’s effect).

Proposition 1.The general model has a unique Nash equilibrium, and

that equilibrium is in pure strategies with a 50-50 split of the surplus.

x∗1 = x∗2 and π(x∗1, x
∗
2) = .5.

Proof. The expected payoffs are

Payoff 1 = p(x1, x2)(0) + (1− p(x1, x2))u(π(x1, x2))− c(x1)

and

Payoff 2 = p(x1, x2)(0) + (1− p(x1, x2))u(1− π(x1, x2))− c(x2).

The first order conditions are

∂Payoff 1

∂x1
=

(
du(π)

dπ
· ∂π
∂x1
− pdu(π)

dπ

∂π

∂x1

)
− ∂p

∂x1
u(π)− dc

dx1
= 0 (2)

and

∂Payoff 2

∂x2
=

(
du

dπ
· ∂π
∂x2
− pdu(1− π)

dπ

∂π

∂x2

)
− ∂p

∂x2
u(1− π)− dc

dx2
= 0,

where the first two terms in parentheses are the marginal benefit of

increasing one’s toughness and the second two terms are the marginal

cost. The marginal benefit is an increased share of the pie, adjusted

for diminishing marginal utility of consumption. The marginal cost is

the loss from more breakdown plus the marginal cost of toughness.

First, note that if there is a corner solution at x1 = x2 = 0, it

is a unique solution with a 50-50 split of the surplus. That occurs

if ∂Payoff 1(0,0)
∂x1

< 0, since the weak convexity assumptions tell us that

higher levels of toughness would also have marginal cost greater than

marginal benefit. That is why we did not need to make a limit as-

sumption such as limx1→0
∂π
∂x1
→∞ and c′′ <∞ for the theorem to be

valid, though of course the model is trivial if the toughness levels of

both players are zero.
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There is not a corner solution with large x1. Risk-neutral utility

with zero direct toughness costs makes risking breakdown by choosing

large x1 most attractive, so it is sufficient to rule it out for that case. Set

u1(π) = π and c(x1) = 0, so ∂Payoff 1

∂x1
= (1− p) ∂π

∂x1
− ∂p

∂x1
π. The function

p is linear or convex, so it equals 1 for some finite x1 ≡ x (for given x2).
∂p
∂x1

> 0, by assumption, and does not fall below ∂p
∂x1

(0, x2) by the as-

sumption of ∂2p
∂x21
≥ 0. Hence, at x1 = x, (1−p(x, x2) ∂π∂x1 −

∂p
∂x1

(x, x2)π =

0− ∂p
∂x1

(x, x2)π < 0 and the solution to player 1’s maximization problem

must be x1 < x.

We will now look at interior solutions and establish uniquenes

and the 50-50 split. We will first establish that the marginal return

to toughness is strictly decreasing and the second-order condition is

satisfied, that ∂2Payoff(1)

∂x21
< 0. The derivative of the first two terms in

(2) with respect to x1 is

[d
2u1
dπ2 ( ∂π

∂x1
)2 + du1

dπ
∂2π
∂x21

] + [− ∂p
∂x1

du1
dπ

∂π
∂x1
− pdu1

dπ
( ∂π
∂x1

)2 − pdu1
dπ

∂2π
∂x21

]

= (1− p)d2u1
dπ2 ( ∂π

∂x1
)2 + (1− p)du1

dπ
∂2π
∂x21
− ∂p

∂x1

du1
dπ

∂π
∂x1

(3)

The first term of (3), the marginal benefit, is zero or negative because

(1− p) > 0 and d2u1
dπ2 ≤ 0. The second term is zero or negative because

(1 − p) > 0, du1
dπ

> 0 and ∂2π
∂x21
≤ 0. The third term— the key one— is

strictly negative because ∂p
∂x1

> 0, du1
dπ

> 0, and ∂π
∂x1

> 0.

The derivative of the third and fourth terms of (2) with respect

to x1, the marginal cost, is

− ∂2p

∂x21
u− ∂p

∂x1

du

dπ

∂π

∂x1
− d2c

dx21
(4)

The first term of (4) is zero or negative because ∂2p
∂x21
≥ 0 and u > 0. The

second term— another key one— is strictly negative because ∂p
∂x1

> 0,
du
dπ

> 0, and ∂π
∂x1

> 0. The third term is zero or negative because
d2c
dx21
≥ 0. Thus, the marginal return to toughness is strictly decreasing.
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The derivative of (2) with respect to x2, the other player’s tough-

ness, is

∂2Payoff 1

∂x1∂x2
= (1− p) du

dπ
∂2π

∂x1∂x2
− ∂p

∂x2
du
dπ

∂π
∂x1
− ∂2p

∂x1∂x2
u− ∂p

∂x1
du
dπ

∂π
∂x2
− 0.

(5)

The first term is weakly negative if x1 < x2 because du
dπ
≤ 0 and the

sign of ∂2π
∂x1∂x2

depends on x1 − x2 by assumption. The third term is

zero or negative because ∂2p
∂x1∂x2

≥ 0 by assumption. The second and

fourth terms sum to − du
dπ

( ∂p
∂x2

∂π
∂x1

+ ∂p
∂x1

∂π
∂x2

). The sign of this depends on

whether x1 < x2. If x1 < x2, then ∂p
∂x2
≥ ∂p

∂x1
and | ∂π

∂x1
| ≥ | ∂π

∂x2
| because

(i) ∂2p
∂x21
≥ 0, ∂

2p
∂x22
≥ 0, and p(a, b) = p(b, a) and (ii) ∂2π

∂x21
≤ 0, ∂

2π
∂x22
≤ 0,

and π(a, b) = π(b, a), so the second and fourth terms sum to a negative

number. If, on the contrary, x1 > x2, the sum is positive, and if x1 = x2
the sum is zero. Using the implicit function theorem, we can conclude

that if x1 < x2,
dx1
dx2

< 0, but for x1 > x2, we cannot determine the

sign of dx1
dx2

without narrowing the model. In the same way, it can be

shown that player 2’s reaction curve is negatively sloped when x2 < x1.

Figure 1 illustrates this.

The conclusion that for x1 < x2,
dx1
dx2

< 0 tells us that although

player 1’s reaction curve for x1 may be rising in x2 for small values

of x2 (because the third term, − ∂2p
∂x1∂x2

u, is outweighed by the other

terms, which are positive for x1 > x2), by the time that x1 reaches

x1 = x2 the reaction curve will have negative slope, and the reaction

curves will never cross again. (See Figure 1 for illustration, noting that

the apparent x1 = x2 = 0 intersection is not actually on the reaction

curves because the two first derivatives are both positive there.) So the

equilibrium must be unique, and with x1 = x2.The assumption that the

pie-splitting function is symmetric then ensures that π = .5.

There are no mixed-strategy equilibria, because unless x1 = x2,

one player’s marginal return to toughness will be greater than the

other’s, so they cannot both be zero, and existence of a mixed-strategy

equilibrium requires that two pure strategies have the same payoffs

given the other player’s strategy. �
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Many of the assumptions behind Proposition 1 are stated with

weak inequalities. This is because the basic intuition is about linear

relations. We can add convexity to strengthen the result and ensure

interior solutions, but convexity is not driving the result like it usually

does in economics. Rather, the intuition is that if one player is tougher

than the other, he gets a bigger share and so has more to lose from

breakdown, which means he has less incentive to be tough. Even if

his marginal benefit of toughness— the rate of increase of his share—

were to be the same as the other player’s (a linear relationship between

π and xi), his marginal cost— the increase in breakdown probability

times his initial share— would be bigger, and that is true even if his

toughness’s marginal effect on breakdown probability is the same as the

other player’s (again, a linear relationship, between p and xi). That is

why we get a 50-50 equilibrium in Example 1 even though p is linear,

u is linear (the payoff was simply π), and c = 0. Proposition 1 tells

us that if we add the natural convexity assumptions about p, u, and

c, the 50-50 split continues to be the unique equilibrium , a fortiori.

Very likely we could even dispense with differentiability and continuity

to some extent.1

3. Three or More Bargainers

Nash’s axiomatic theory of bilateral bargaining extends unchanged

to n players. Symmetry and efficiency require si = sj and Σn
i=1si = 1,

so si = 1/n. Finding a model that attains an equilibrium less directly

has proven elusive. Many attempts have been made to extend the

Rubinstein Model to n players, but none has attained the success of

1Note that even the weak convexity assumptions could be weakened (and the in-
finitesimal fixed cost assumption dropped) if we are willing to impose a maximum
toughness level at which breakdown has probability less than 1. Suppose xi ∈ [0, x]

with p(x, x) < 1, but we do not require ∂p2

∂x2
i
≥ 0 but that we still require ∂p2

∂xi∂xj
≤ 0.

In that case, the marginal cost of toughness might fall in one’s own toughness and
the equilibrium might either be interior and with equal toughness or an upper cor-

ner solution at x1 = x2 = x, a 50-50 split in either case. (We still need ∂p2

∂xi∂xj
≥ 0

to prevent one player’s marginal cost from rising in the other player’s marginal cost,
strategic substitutes, in which case the equilibrium might be asymmetric.)
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the 2-player version. (See section 3.13 of Osborne & Rubinstein for the

most natural way to extend the model.) Kullti & Vartiainen (2010) say

“Vastness of equilibria is a well known problem of multiplayer bargain-

ing games,” though with restrictions on the stationarity of equilibrium,

uniqueness can be obtained in a dynamic game such as Rubinstein’s.

Shaked (in unpublished work), Binmore (1985), and Herrero (1985)

take this approach, and it is nicely presented in Sutton (1986). Later

articles in the literature include Chae & Yang (1988, 1994), Krishna &

Serrano (1996), Chatterjee (2000), Huang (2002), Suh & Wen (2006),

and Kullti & Vartiainen (2010). Baron & Ferejohn (1989) also look at a

multi-player bargaining, but in the legislative context, where the multi-

ple players are legislators who vote on proposals and agenda-setting—

the issue of who proposes and how— is central, adding structure special

to government. Their contribution to two-player bargaining is the idea

of a model in which each player has an equal probability of making the

offer in each period, which makes the ex ante payoffs not just close to

equal, as in Rubinstein (1982), but exactly equal.

The breakdown model can be adapted to N bargainers. We can

use Example 1’s specification of the breakdown and sharing functions,

but with p(x1, x2, . . . , xN) =
∑N

i=1 xi
12

and πi(x1, x2, . . . , xN) = xi∑N
i=1 xi

.

This is limiting, because it avoids the need for adding extra assumptions

to Proposition 1 to limit the cross-partials between the effects of xi and

xj on π and p so that indirect effects do not exceed direct effects, but

I don’t think anybody actually would find those useful or interesting,

even as a mathematical topic. So let Player i’s payoff function be

Payoff i = (1−
∑N

i=1 xi
12

)
xi∑N
i=1 xi

with first order condition

1∑N
i=1 xi

− xi

(
∑N

i=1 xi
)2 − 1

12
= 0

All N players have this same first order condition, so xi = x and

1

Nx
− x

(Nx)2
− 1

12
= 0,
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yielding

x =
12(N − 1)

N2
.

The equilibrium probability of breakdown is

p(x, . . . , x) =
N 12(N−1)

N2

12
=

(N − 1)

N

As N increases, the probability of breakdown approaches one but

does not reach it: if N = 2, then x = 12 · 1/4 = 3 and the probability

of breakdown is 50%; If N = 3, x = 12 · 2/9 ≈ 2.67 so the probability

of breakdown rises to about 67%; If N = 10, x = 12 · 9/100 = 1.08

and the probability rises to 90%. Increasing toughness has a negative

externality which increases with the number of players. Each player’s

equilibrium share falls, so by being tougher he is mostly risking the

destruction of the other players’ payoffs.

4. Unequal Bargaining Power

In ordinary conversation, “bargaining power” is used loosely to

refer to whether someone can get a good outcome in bargaining, so, for

example, someone trying to sell a product known to be worthless has

little bargaining power. Economists now use the term to refer to the

percentage of bargaining surplus a player can obtain. Thus, we would

say that someone with a product that costs $50 and is worth $150 to the

buyer has bargaining power of 80% if he can get a price of $130 out of

the negotiation process. If John Doe was obviously negligent when he

hit Richard Roe with his car and caused him $100,000 in damage, and it

would cost each of them $10,000 in lawyer fees to go to court, common

parlance would be that John Doe has little bargaining power, but if the

outcome is a settlement payment of $80,000 instead of $100,000, the

economist would say John Doe has overwhelming bargaining power—

even though he is a bad “bargaining position”.

So far, the players in the present paper’s bargaining model have

had equal bargaining power. Often in applications we want to give one

player more bargaining power than the other. This can be done by
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specifying that one player make a take-it-or-leave-it offer, or that one

player will get θ percent of the surplus without specifying a model, or by

using Rubinstein (1982) with two players who have different discount

rates. The present model can be set up to introduce asymmetry via

different discount rates also, or by differing rates of risk aversion, as we

will see later. Here, however, I will introduce a functional form that

allows us to assign the players “bargaining power” parameters of θ and

(1− θ) that will give them shares of the same size based on how skilled

they are at being tough without inducing breakdown.

Example 3: Unequal Bargaining Power. Let the probability of

breakdown be p(x1, x2) = Min{e(1−θ)βx1+θβx2 − 1, 1}, where θ ∈ [0, 1]

is player 1’s bargaining power and β > 0 is a parameter for breakdown

risk. Let player 1’s share of the pie be π(x1, x2) = .5 + (x1 − x2). The

payoff functions are then

Payoff 1 = p(0) + (1− p)π = (1− e(1−θ)βx1+θβx2 + 1)[.5 + (x1−x2)] (6)

and

Payoff 2 = p(0)+(1−p)(1−π) = (1−e(1−θ)βx1+θβx2+1)[1−(.5+(x1−x2))]

Maximizing equation (16) with respect to x1, Player 1’s first order

condition is

∂Payoff 1

∂x1
= (2−e(1−θ)βx1+θβx2)−(1−θ)βe(1−θ)βx1+θβx2 [.5+(x1−x2)] = 0

and for player 2,

∂Payoff 2

∂x2
= (2− e(1−θ)βx1+θβx2)− θβe(1−θ)βx1+θβx2 [.5− (x1 − x2)] = 0

Define Z ≡ e(1−θ)βx1+θβx2 . Then we can equate these derivatives to get

(2− Z)− (1− θ)βZ[.5 + (x1 − x2)] = (2− Z)− θβZ[.5− ((x1 − x2)]

It follows that2

x1 = x2 + θ − .5

2Then (1− θ)βZ[.5 + ((x1 − x2)] = θβZ[.5− ((x1 − x2)], which implies (1− θ)[.5 +
((x1−x2)] = θ[.5−((x1−x2)].Then .5+x1−x2−.5θ−θx1+θx2 = .5θ−θx1+θx2 so
.5+x1−x2 = θ and x1 = x2+θ−.5. It then follows that π = .5+(x2+θ−.5)−x2 = θ.
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and

π = θ.

In this specification the marginal benefit of toughness— the in-

crease in a player’s share of the pie— is equal for both players and

independent of how tough they are, allowing considerable simplifica-

tion. At the same time, use of the exponential function for the prob-

ability of breakdown, p, means that the marginal cost of toughness—

the increase in the probability of breakdown— is p times the player’s

bargaining power, θ or (1 − θ). That is why the equilibrium shares

work out so neatly.

It remains to find x1 and x2. These are

x1 =

(
1

β

)
log

(
2e.5β(2θ

2−3θ+1)

1 + βθ − βθ2

)
+ θ − .5

and

x2 =

(
1

β

)
log

(
2e.5β(2θ

2−3θ+1)

1 + βθ − βθ2

)

Let β = 1. Then if θ = .5, x1 = x2 ≈ .47, p ≈ .60, and player

1’s expected payoff is about .20. If player 1’s bargaining power rises to

θ = .8, then x1 ≈ .78, x2 ≈ .48, p ≈ .72, and player 1’s expected payoff

is about .22. (Note that although player 1’s bargaining power has led

him to increase his toughness considerably, it has also led player 2 to be

tougher, so the probability of breakdown rises enough to almost cancel

out player 1’s gain from getting a bigger share of the pie.) If we let

β = 3, then if θ = .5, x1 = x2 ≈ .05, p ≈ .14, and player 1’s expected

payoff is about .43. As one would expect, more convex costs (more

convex breakdown probability) leads to less toughness in negotiating

and higher expected payoffs for both players.

This specification is one in which one of the players can increase

his toughness and get a bigger share but not increase the breakdown

probability as much as the other player. He is somehow better at being

tough without wrecking the deal. He is better at both parts of “The
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Art of the Deal”: increasing his own share, and increasing the expected

pie size.

5. Risk Aversion

Proposition 1 allowed for risk aversion, but it required the players

to have identical utility functions. The model can be applied even when

the players have different utility functions. Proposition 2 confirms what

one would expect: a player who is more risk averse will end up with a

smaller share.

Proposition 2: If player 1 is more risk averse than player 2, his share

is smaller in equilibrium.

Proof.

Payoff 1 = pu(0;α1) + (1− p)u(π;α1)

which has the first-order condition

∂p

∂x1
u(0;α1)−

∂p

∂x1
u(π;α1) + (1− p)u′(π;α1)

∂π

∂x1
= 0

We can rescale the units of utility functions of two people, so let’s

normalize so u(0;α1) ≡ u(0;α2) ≡ 0 and u′(0;α1) ≡ u′(0;α2). Then,

∂p

∂x1
u(π;α1] = [1− p]u′(π;α1)

∂π

∂x1
,

so
∂p
∂x1

1− p
=
u′(π;α1)

∂π
∂x1

u(π;α1]

Similarly, for player 2’s choice of x2,

∂p
∂x2

1− p
=
u′(1− π;α2)

∂π
∂x2

u(1− π;α2]

If player 1 is less risk averse, his utility function is a concave in-

creasing transformation of player 2’s (Crawford [1991]). This means

that for a given y, for player 1 the marginal utility u′1(y) is bigger than

for player 2, which also means that the average utility u(y)/y is further
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from the marginal utility, because u′′ < 0, and u′(0) is the same for

both. In that case, however, u′(y)
u(y)/y

is bigger for player 1, so u′(y)
u(y)

is also

bigger. If y = π = 1 − π = .5π, we would need ∂p
∂x1

> ∂p
∂x2

(unless

both equalled zero) and ∂π
∂x1

< ∂π
∂x2

, which would require x1 6= x2, which

would contradict π = .5. The only way both conditions could be valid

is if x1 > x2, so that ∂p
∂x1
≥ ∂p

∂x2
and ∂π

∂x1
< ∂π

∂x2
. �

Example 4 illustrates Proposition 2.

Example 4: Risk Aversion. As in Example 1, let the breakdown

function be p(x1, x2) = x1+x2
12

and the sharing function be π(x1, x2) =
x1

x1+x2
. Now let the players have the constant average risk aversion

(CARA) utility functions u(yi;αi) = −e−αiyi . This means that the

player whose value of α is bigger will be the more risk averse for share

value y.

Payoff 1 = pu(0)+(1−p)u(π) =
x1 + x2

12
(−1)+(1−x1 + x2

12
)u1(

x1
x1 + x2

),

which has the first-order condition

− 1

12
− 1

12
u+ (1− x1 + x2

12
)u′ · [ 1

x1 + x2
− x1

(x1 + x2)2
] = 0.

With CARA utility, if α1 6= 0 then u′ = −α1u, so

− 1

12
+

1

12
u1 − (1− x1 + x2

12
)α1u1 · [

1

x1 + x2
− x1

(x1 + x2)2
] = 0

and

− 1

12
+e
−α1

x1
x1+x2

(
1

12
+ (1− x1 + x2

12
)α1 · [

1

x1 + x2
− x1

(x1 + x2)2
]

)
= 0.

We cannot solve this expression to get analytic solutions for x1
and x2, but Mathematica’s FindRoot function yields the numerical

solutions shown in Table 1.
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Table 1:

Toughness, (x1/x2) and Player 1’s Share π As Risk Aversion (α1, α2)

Changes (Rounded)

α2

.01 .50 1.00 2.00 5.00

.01 3.00/3.00

50

.50 2.82/2.99 2.81/2.81

49 50

α1 1.00 2.64/2.98 2.63/2.79 2.61/2.61

47 49 50

2.00 2.33/2.95 2.31/2.75 2.28/2.56 2.21, 2.21

44 45 47 50

5.00 1.64/2.79 1.60/2.57 1.55/2.35 1.43/1.95 1.10/1.10

23 38 40 42 50

This makes sense. The more risk averse a player is relative to his

rival, the lower his share of the pie. He doesn’t want to be tough and

risk breakdown, and both his direct choice to be less tough and the

reaction of the other player to choose to be tougher in response reduce

his share.

This is a different effect of risk aversion than has appeared in the

earlier literature. In a cooperative game theory model such as Nash

(1950), risk aversion seems to play a role, but there is no risk in those

games. Nash’s Efficiency axiom means that there is no breakdown and

no delay. Since we conventionally model risk aversion as concave utility,

risk seems to enter when it is really just the shape of the utility func-

tion that does the work; the more “risk averse” player is the one with

sharper diminishing returns as his share of the pie increases. Alvin Roth

discusses this in his 1977 and 1985 Econometrica papers, distinguishing

between this “strategic” risk and the “ordinary” or “probabilistic” risk
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that arises from uncertainty. Osborne (1985) does look at risk aver-

sion in a model with uncertainty, but the uncertainty is the result of

the equilibrium being in mixed strategies. One might also look at risk

aversion this way in the mixed-strategy equilibria of Splitting a Pie

examined in Malueg (2010) and Connell & Rasmusen (2018). In the

breakdown model, however, the uncertainty comes from the probability

of breakdown, not from randomized strategies.

6. Breakdown Causing Delay, Not Permanent Breakdown–

A Model in the Style of Rubinstein (1982)

In Rubinstein (1982), breakdown— meaning, the rejection of an

offer— causes delay, not permanent loss of the bargaining surplus. The

players have positive discount rates, though, so each period of delay

does cause some loss. Crucially, that loss is proportional to the player’s

eventual share of the pie, so in the end the Rubinstein model might

be said to have the same driver as the present model. As in the static

model, the probability of breakdown is zero or one rather than rising

continuously with bargaining toughness. The dynamics are driven by

the asymmetry between offeror and receiver, the offeror having a slight

advantage because of the delay cost to both players from his offer being

rejected.

Even temporary breakdown never occurs in equilibrium in the Ru-

binstein model, because the game has no uncertainty and no asymmet-

ric information. The players move sequentially, taking turns making

the offer. The present model adapts very naturally to the setting of

infinite periods. Breakdown simply means that the game is repeated

in the next period, with new choices of toughness. Of course, the play-

ers must now have positive discount rates, or no equilibrium will exist,

because being tougher in a given period and causing breakdown would

have no cost.

One interpretation of discounting is as a probability that break-

down occurs exogenously with some probability each period, an inter-

pretation of the Rubinstein model that makes it look something like
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the present paper’s model: the players are apprehensive that if they are

tougher and delay agreement, they risk losing the entire surplus. The

Rubinstein model, however, relies crucially on multiple rounds, because

it is the looking forward to future rounds that determines what offer a

player makes currently and what offers the other player would accept.

Also, the probability of breakdown is constant and exogenous, rather

than directly depending on the toughness of the bargainers. Where it

depends on the bargainers is by creating a threat that if the offeror is

tough past a known point, the receiver will reject his offer and exoge-

nous permanent breakdown may occur.

Let’s look at the effect of repetition and discounting the present

model. Let the two players simultaneously choose their toughness levels

but if breakdown occurs, it just causes the game to be repeated, as

many times as necessary until agreement is reached. Apply Proposition

1’s assumptions for the breakdown p and sharing π functions, but omit

the cost c and the general utility function u, instead having the players

be risk neutral with no direct cost of toughness, and with discount rates

r1 and r2, both strictly positive.

Now that the game has multiple periods, we will also require

the equilibrium to be subgame perfect. We will also require to to

be Markov, a stationary equilibrium in which a player’s strategy does

not depend on previous play of the game. There exist other equilibria,

but let us wait to discuss the justification for excluding them.

Let’s denote the equilibrium expected payoff of player 1 by V1,

which will equal

Payoff 1 = V1 = p
V1

1 + r1
+ (1− p)π (7)

Player 1’s choice of x1 this period will not affect V1 next period

(because we are looking for a stationary subgame perfect equilibrium),

so the first-order condition is

∂Payoff 1

∂x1
=

∂p

∂x1

V1
1 + r1

+ (1− p) ∂π
∂x1
− ∂p

∂x1
π = 0
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We can rewrite the payoff equation (7) as V1(1− p
1+r1

) = (1− p)π
and V1

1+r1−p
1+r1

= (1− p)π and

V1 =
(1 + r1)(1− p)π

(1 + r1 − p)
(8)

Substituting in the first-order condition using (8) gives

∂Payoff(1)

∂x1
=

∂p

∂x1

(1+r1)(1−p)π
(1+r1−p)

1 + r1
+ (1− p) ∂π

∂x1
− ∂p

∂x1
π = 0 (9)

so
∂Payoff 1

∂x1
=

∂p

∂x1

(1− p)π
(1 + r1 − p)

+ (1− p) ∂π
∂x1
− ∂p

∂x1
π = 0

which simplifies to

∂Payoff 1

∂x1
= (1− p) ∂π

∂x1
− ∂p

∂x1

r1π

(1 + r1 − p)
= 0 (10)

Note that the marginal benefit of toughness, the first term, is the same

as in the one-period game— a larger share of the pie if bargaining does

not break down— but the marginal cost, the second term, is now an

increased probability of a delayed payoff, which is increasing in the

discount rate r1.

Proposition 3. In the unique stationary equilibrium of the mul-

tiperiod bargaining game, a player’s toughness and equilibrium share

falls in his discount rate.

Proof. Differentiating the payoff again, the second-order condition is

∂2Payoff 1

∂x21
= (1− p)∂2π

∂x21
− ∂p

∂x1
∂π
∂x1
− ∂2p

∂x21

r1π
(1+r1−p)

− ∂p
∂x1

r1
(1+r1−p)

∂π
∂x1
− ( ∂p

∂x1
)2 r1π

(1+r1−p)2 < 0
(11)

This expression is negative because we have assumed that ∂2π
∂x21

> 0,
∂p
∂x1

> 0, and ∂π
∂x1

> 0.

Note that
∂2Payoff 1

∂x1∂r1
=

∂p

∂x1

−(1− p)π
(1 + r1 − p)2

, (12)

which is negative. As a result, since the second-order condition for

choice of x1 is also negative, the implicit function theorem tells us that
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the optimal choice of x1 falls with r1, for a given level of x2. Player 2

chooses x2 by maximizing his own payoff function,

Payoff 2 = V2 = p
V2

1 + r2
+ (1− p)(1− π).

Player 2’s first order condition can be derived in the same way as player

1’s:
∂Payoff 2

∂x2
= −(1− p) ∂π

∂x2
− ∂p

∂x2

r2(1− π)

(1 + r2 − p)
= 0

Since player 2’s first-order condition does not depend on r1, player 2’s

choice of x2 is independent of r1 and is unchanged when r1 changes

infinitesimally. Thus, the effect of an increase in r1 is to reduce x1, and

hence player 1’s equilibrium share. The argument for why an increase

in r2 reduces x2 is parallel. �

We will explore this more in Example 5.

Example 5: Multiple Rounds of Bargaining

This example adds unlimited rounds of bargaining to Example 1,

which tells us that ∂p
∂x1

= 1/12 and ∂π
∂x1

= 1
x1+x2

− x1
(x1+x2)2

. Solving (10)

yields

x1 =
−12r1x2 + x22 − 12x2 + 12

√
r1x2(12r1 − x2 + 12)

12r1 − x2
(13)

Player 1’s toughness is a function of his own discount rate and of

player 2’s toughness but depends only indirectly on player 2’s discount

rate. Let’s look at the limiting cases of r1 = 0 and r1 =∞.

lim
r1→0 x1 =

−12x2(0)+x22−12x2+12
√
0

0−x2

= 12− x2

(14)

and

lim
r1→∞ x1 = −12r1x2

12r1−x2 +
12
√

(12x2r21−x2r1+12r1)

12r1−x2 +
+x22−12x2
∞

= −x2 +
√

(12x2

(15)



24

If the two players have the same discount rates, their first order

conditions are parallel and x1 = x2 in equilibrium. As the discount

rate approaches zero, equation (14) tells us that toughness approaches

6 for each player, not 3, as in the one-shot Example 1, and the proba-

bility of breakdown in any given period approaches 1. That is because

breakdown is relatively harmless, so players find it worthwhile to be

extremely tough in order to increase their share of the pie.3 As the dis-

count rate approaches infinity, on the other hand, each player’s tough-

ness approaches x = −x +
√

(12x, so 2x =
√

(12x, 4x2 = 12x, and

x1 = x2 = 3. This is Example 1’s result, which, indeed, is equivalent

to the present game when the pie is worthless if the players have to

wait to consume it till the second period. The diagonal values with the

boldfaced 50% split in Table 2 show how the equilibrium toughnesses

fall with the discount rate in the symmetric game.

3The extreme case of r1 = r2 = 0 would yield x1 = x2 = 6 and p = 1 if the
players followed the strategy of equation (14). That is paradoxical because each
player would have a payoff of zero, and either of them could get a positive payoff
by deviating to be less tough. No Nash equilibrium would exist, even in mixed
strategies.
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Table 2:

Toughness (x1/x2) and Player 1’s Share (π) As Impatience

(r1, r2) Increases (rounded)

r2
.001 .010 .050 .100 .500 2.000

.001 5.5/5.5

50

.010 2.9/7.4 5.5/5.5

28 50

r1 .050 2.5/7.6 3.5/7.0 4.9/4.9

25 33 50

.100 1.4/9.6 2.9/7.4 4.2/5.4 4.6/4.6

13 25 44 50

.500 1.1/9.8 2.1/7.8 3.0/6.0 3.3/5.2 3.8/3.8

10 21 33 39 50

2.000 1.0/9.9 1.9/7.9 2.6/6.2 2.8/5.4 3.2/3.9 3.3/3.3

9 19 30 34 45 50

Table 2 shows the equilibrium shares, but it does not show the ex-

pected payoffs, which depend not just on the shares but on the break-

down probability and the expected time delay before agreement. De-

note the expected payoff when r1 = r2 = r by V (r). The expected
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payoff equals, for interior solutions where x1 + x2 < 12, 4

V (r) = (1 + r)(1− p) ∗ (.5)/(1 + r − p)

= (1 + r)(1− 2x
12

) ∗ (.5)/(1 + r − 2x
12

)

= r
2

+ .5−
√
r2+r
2

The expected payoff falls with the discount rate,5 with an upper

bound of .5 and a lower bound of .25.6 Recall from Example 1 that if

the surplus falls to 0 after breakdown, the equilibrium probability of

breakdown is .5. The expected payoff when players are more patient

is higher because although agreement takes longer, the cost per period

of delay is enough lower to outweigh that. In the Rubinstein model,

the split approaches 50-50 as the discount rate approaches zero. Here,

the probability of breakdown approaches zero as the discount rate ap-

proaches zero.

The present game does not have Rubinstein’s first-mover advan-

tage, because both player’s choose toughness simultaneously. Also,

agreement may well take more than one round of bargaining, unlike in

the Rubinstein game’s equilibrium.

4V = (1 + r)(6 − x)/(12 + 12r − 2x) = (1 + r)(6 − [6r − 6
√
r2 + r + 6])/(12 +

12r− 2[6r− 6
√
r2 + r+ 6]) = (1 + r)(−r+

√
r2 + r)/(2 + 2r− 2[r−

√
r2 + r+ 1] =

(1 + r)(−r +
√
r2 + r)/2

√
r2 + r = (1+r)(

√
r2+r−r)

2
√
r2+r

= (1/r)(r2+r)

2
√
r2+r

(
√
r2 + r − r) =

√
r2+r
2r (

√
r2 + r − r) = r2+r

2r −
r
√
r2+r
2r = r

2 + .5−
√
r2+r
2 .

5dV/dr = .5 − 2r+1
4
√
r2+r

, which has the same sign, multiplying by 4
√
r2 + r, as

2
√
r2 + r − (2r + 1). Square the first, positive, term and we get 4r2 + 4r. Square

the second, negative, term and we get the larger amount 4r2 + 1 + 4r. Thus, the
derivative is negative.
6As r → 0, V (r) → .5. As r → ∞, we know x → 3, so V (r) → (1+r)(1− 6

12 )(.5)

(1+r− 6
12 )

=

.25(1+r)
.5+r . As r →∞, this last expression approaches .25r

r = .25.
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Figure 2:

Reaction Curves for Toughness x1 and x2
(a) r1 = r2 = .05 (b) r1 = .25, r2 = .05
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Particular reaction functions show what is going on. We have

already seen that ∂xi
∂ri

< 0. The reaction curves are plotted in (x1, x2)

space in Figure 2. In the relevant range, near where they cross, they

are downward sloping. Not only does this make the equilibrium unique,

it also tells us that the indirect effect of an increase in r1 goes in the

same direction as the direct effect. If r1 rises, that reduces x1, which

increases x2, which has the indirect effect of reducing x2 further, and

so the indirect effects continue ad infinitum.

Recall that I said the game has multiple equilibria. This is not be-

cause of the Folk Theorem, because this is not a repeated game in the

sense of having per-period payoffs. It is, however, a game that allows

punishment strategies in a subgame-perfect equilibrium if it is infin-

itely repeated. The Markov equilibrium can function as a punishment

strategy. If discount rates are low enough, other equilibria will exist

in which players have payoffs as great or greater than in the Markov

equilibrium— and possibly asymmetric payoffs, so splits that are not

50-50. The Markov equilibria has x∗1 = x∗2, we will see. There will be

other equilibria in which x1 < x2 < x∗2, so player 2 gets a bigger share

of the pie. This can happen because another part of the equilibrium

strategy would be that if player 1 deviates and plays a bigger x1, both

players revert to the x∗1 = x∗2 equilibrium, which has greater expected
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delay and is worse for both of them, for T periods, where T is big

enough to deter deviation.

If the game has a finite number of periods, however, the multi-

plicity of equilibria disappears and we are left with a unique subgame

perfect equilibrium that has a 50-50 split and resembles the Markov

equilibrium. Suppose there are T periods. The last period is identical

to the one-shot game and will have the same choices of x1 and x2. The

previous period will have somewhat higher x1 and x2, but the two-

period game also has a unique equilibrium. The earlier the period, the

higher the x1 and x2, but the limiting case is the Markov infinite-period

equilibrium.

This is not the case in the Rubinstein game. There, even the

infinite-period game has a unique equilibrium. The intuition is that

the Rubinstein game reaches immediate agreement in equilibrium, so

there is no opportunity for Pareto improvement by having equilibria

with less delay— there is no delay to begin with.

7. Outside Options

We have been assuming that the “threat point”, the result of

breakdown, is a payoff of zero for each player. Shaked & Sutton (1984)

show that the idea of the threat point is more complicated than it

first seems. Suppose, for example, that the two players are bargaining

over a surplus equal to 1, but player 1 has an “outside option” which

gives him a payoff of .3 if he chooses to take it instead of continuing

to bargain. If we incorporate this outside option into the basic static

model in which both players propose shares and breakdown occurs, no

outcome in which player 1 receives less than .3 can be an equilibrium,

but any share for him between .3 and 1 continues to be an equilibrium.

If we try to choose an equilibrium by thinking of what equilibrium is

a focal point, or corresponds to social custom, (.5, .5) remains attrac-

tive, but so does a split of the social gains from bargaining of .7, which

would give a share of .3 + .5(.7) = .65 to player 1 and .35 to player 2.

The alternating-offer game of Rubinstein (1982) puts more structure
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on the situation. Shaked & Sutton (1984) show that if player 1 has the

possibility of taking his outside option of .3 at any point in the game,

it makes absolutely no difference. Assuming that his equilibrium share

is something close to .5 (a little more if it is his turn to make the offer,

a little less if he is the receiver and can only accept or reject), player 1

would never take his outside option, so it does not affect his behavior,

or player 2’s. Moreover, if player 1’s outside option were greater than

what would otherwise be his equilibrium share— .8, say— then his

equilibrium share would rise just to the outside option of .8, no higher.

Player 2 would offer .8 in the first period, and player 1 would accept,

knowing that if he rejected, he could do no better with a counteroffer

because player 2 would always retreat to a new offer of .8.

Shaked & Sutton’s result is counterintuitive because our natural

thought is that an outside option of .3 would improve player 1’s bar-

gaining position and result in him getting a bigger equilibrium share.

Their insight is that a small outside option is irrelevant, because player

1’s threat to take it is not credible; player 2 can safely be tough because

even his tough offer of .5 is still better than the outside option.

In the breakdown model, an outside offer has a different impact. It

has an effect somewhere between irrelevancy and improving the threat

point. The reason is that a threat’s lack of credibility is not a factor,

but a player’s choice of toughness does depend on what happens to him

in case of breakdown. We will see this in Example 6.

Example 6: Player 1 Has an Outside Option of z. As in Example

1, let the breakdown probability be p(x1, x2) = x1+x2
12

and player 1’s

share be π(x1, x2) = x1
x1+x2

. Player 1 has an outside option of z, a

payoff he receives if bargaining breaks down. The payoff functions are

Payoff 1 = pz+(1−p)π =
x1 + x2

12
z+(1−x1 + x2

12
)

x1
x1 + x2

=
x1

x1 + x2
−x1

12
(16)

and

Payoff 2 = p(0)+(1−p)(1−π) = (1−x1 + x2
12

)(1− x1
x1 + x2

) =
x2

x1 + x2
−x2

12
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Maximizing equation (16) with respect to x1, Player 1’s first order

condition is

∂Payoff 1

∂x1
=

z

12
+

1

x1 + x2
− x1

(x1 + x2)2
− 1/12 = 0

so x1 + x2 − x1 − (1−z)(x1+x2)2
12

= 0 and 12
1−zx2 − (x1 + x2)

2 = 0. Player

1’s reaction curve is

x1 =

√
12

1− z
√
x2 − x2,

Player 2’s reaction curve is

x2 =
√

12
√
x1 − x1,

As a result,
√

12
1−z
√
x2 =

√
12
√
x1−x1, so x2

1−z = x1 and player 1’s

share is x1
x1+x2

= 1
2−z .

Why is it that the outside option does not operate the same way

as a different threat point? If z = .2, then player 1’s share would

be .6 if the social surplus from reaching a bargain were split evenly,

but as an outside option, it yields him less: 1
2−z = 5/9. The outside

option also helps player 1 if it is bigger than .5. If z = .8 it would be

.83 (approximately)— but if the threat point were .8, player 1’s share

would be .9. Player 1’s outside option improves his bargaining position,

but not as much as if he started with .8 and bargaining occurred over

the difference between .8 and 1.

The reason is that the outside option is not a base level, but a

replacement, and the toughness necessary for player 1 just to obtain

the equivalent of his outside option can itself induce breakdown. Let

us return to the general model with risk neutrality (u(a) = a) and no

direct cost of threats (c = 0), but giving player 1 an outside option of

z.

Proposition 4. If player 1’s outside option is z, his equilibrium

bargaining share will be strictly greater than .5 and no greater than

.5 + .5z, attaining the upper bound only if p and π are both linear.
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Proof. The expected payoffs are:

Payoff 1 = p(x1, x2)z + (1− p(x1, x2))π(x1, x2)

and

Payoff 2 = p(x1, x2)(0) + (1− p(x1, x2))(1− π(x1, x2))

The first-order conditions are

∂Payoff 1

∂x1
=

∂p

∂x1
z − ∂p

∂x1
π(x1, x2) + (1− p(x1, x2))

∂π

∂x1
= 0

and

∂Payoff 2

∂x2
= − ∂p

∂x2
(1− π(x1, x2)) + (1− p(x1, x2))

∂π

∂x2
= 0

and in equilibrium those two derivatives must be equal:

− ∂p

∂x1
(π − z) + (1− p) ∂π

∂x1
= − ∂p

∂x2
(1− π)− (1− p) ∂π

∂x2
(17)

We can see that x1 = x2 cannot be an equilibrium, since then
∂p
∂x1

= ∂p
∂x2

and ∂π
∂x1

= − ∂π
∂x2

, reducing the previous equation to π − z =

1 − π, which does not permit π = 1/2. Instead, we need x1 > x2 so

that π > 1/2 and ∂π
∂x1

< − ∂π
∂x2

.

Rearranging the last equation, we have

− ∂p

∂x1
(π − z) +

∂p

∂x2
(1− π) = (1− p)(− ∂π

∂x2
− ∂π

∂x1
) (18)

Player 1’s share cannot be as great as π = z+ .5(1− z) = .5 + .5z,

however. Then π − z = 1− π, so the left side of the previous equation

is negative or zero if ∂p
∂x1
≥ ∂p

∂x2
, which must be the case since when

π > .5, as here, it must be that x1 > x2 and the second derivatives of p

are negative or zero. At the same time, when x1 > x2 then ∂π
∂x1
≤ − ∂π

∂x2
,

so the right side of the equation must be zero or positive. The left side

can equal the right side only if they are both zero, which happens only

if both p and π are linear.

Hence, we can conclude that .5 < π ≤ .5 + .5z. �
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Think of the left-hand side of (17) as player 1’s marginal cost and

benefit of toughness and the right-hand side as player 2’s. Suppose we

start with player 2’s first-order condition satisfied and with x1 = x2.

This means that π = 1/2 and the marginal benefits of increasing share

via increasing toughness are the same for both players. Player 1’s

marginal cost, however, is less than player 2’s, because it consists of the

marginal increase in the probability of breakdown, which is the same for

both players, times what is lost, which is just π−z for player 1 but 1−π
for player 2. Hence, for player 1 to satisfy his first order condition, x1
must increase relative to x2, which has the effect of reducing player 1’s

marginal benefit (because ∂π
∂x1

falls in x1 ) and increasing his marginal

cost (both because π − z rises and because ∂p
∂x1

rises).

Concluding Remarks

The purpose of this model is to show how a simple and intuitive

force— the fear of inducing bargaining breakdown by being too tough—

leads to a 50-50 split being the unique equilibrium outcome in bargain-

ing. Such a model also implies that the more risk-averse player gets a

smaller share of the pie, and it can be easily adapted to n players. The

force at work is intuitive: the bargainers fear that being too tough will

induce breakdown and cause them to lose their equilibrium share, but

that means that if one player’s equilibrium share were greater, his po-

tential loss would be greater too and he would scale back his toughness

level to that of the other player. If one player is better at being tough

without inducing breakdown, however, that player would be willing to

push harder and would indeed receive a bigger share. Thus, the inter-

pretation of bargaining power in this model is that a player is better

at being tough without pushing the other player too far. All of this

operates in the context of complete information and without any need

for multiple periods of bargaining. The game can be extended to mul-

tiple periods, in which case it becomes similar to Rubinstein (1982)

but without the asymmetry of one player being privileged to make the

first offer and with the possibility that bargaining lasts more than one

round.
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