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ERIC RASMUSEN

FOLK THEOREMS FOR THE OBSERVABLE
IMPLICATIONS OF REPEATED GAMES*

ABSTRACT. The fact that infinitely repeated games have many different equilibrium
outcomes is known as the Folk Theorem. Previous versions of the Folk Theorem have -
characterized only the payoffs of the game. This paper shows that over a finite portion of
an infinitely repeated game, the concept of perfect equilibrium imposes virtually no
restrictions on observable behavior. The Prisoner’s Dilemma is presented as an example
and discussed in detail.
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1. INTRODUCTION

The Folk Theorem says that an infinitely repeated game has many
different equilibrium outcomes. In formalizing this idea, the most
important tasks are to define ‘many’, ‘outcome’, and ‘equilibrium’, and
to specify how the payoffs of infinite games are calculated. Different
formalizations have resulted in a variety of statements of the Folk
Theorem, many of which are surveyed by Fudenberg and Maskin
(1986).! Fudenberg and Maskin pay special attention to the importance
of discounting, and the difference between the Nash and subgame
perfect equilibrium concepts.’

Running throughout Fudenberg and Maskin and the rest of the
literature is the definition of ‘outcome’ as a set of payoffs averaged
over the course of the game. The usual versions of the Folk Theorem
therefore say that in an infinitely repeated game a large number of
equilibrium average payoff combinations exist.”

This paper will use a different definition of outcome: that an
outcome is a time path of action combinations. Such a definition is
useful for two reasons. First, it directly applies to behavior, which is
usually what interests the applied modeller. Second, it calls attention
to the fact that some equilibria include actions which generate current-
period payoffs below the minimax levels. This fact is obscured in
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existing Folk Theorems by the definition of ‘many’, which restricts
equilibrium outcomes to average- payoffs greater than the minimax
levels. ‘

The new theorems in this article are not implied by existing
theorems, but neither they nor their proofs are deep, given existing
results. I have concentrated on trying to provide applied modellers
with some useful theorems and an unusually lengthy discussion of the
assumptions. Section 2 lays out the model and the notation. Section 3
states four theorems: a conventional Folk Theorem from Fudenberg
and Maskin (1986), and three new theorems, all stated in terms of
observed outcomes, but differing in their applicability. Section 4
discusses the theorems and their assumptions, and Section 5 applies
them to the repeated Prisoner’s Dilemma.

2. THE MODEL

Consider an n-person game with payoffs =: M, xX---xX M, —>R",
where M, is a finite set whose elements are the moves available to
player i, and  is the vector of payoff functions for the n players.” This
is the one-shot game, in distinction to the larger game consisting of
repetitions of the one-shot game.

In the mixed extension of the game, player i also has the option of
randomizing over M,, and we will denote a set of moves or lotteries of
moves from M; by a,. In the one-shot game, a, would be player i’s
strategy, but in the repeated game, it is just one period’s component of
his strategy. Game theory lacks a conventional term for the set of
moves plus lotteries of moves; let us call ¢; an action in this article; an
action can therefore be either pure or mixed. An action combination is
a vector @ of one action for each player, {q;}, (i=1,...,n). Given
the action combination a, a_; denotes the set of (n — 1) actions that
excludes a;.

We will assume that the actions are chosen simultaneously, that they
are observed by all players, and that the players obsérve which mixed
actions are being played (rather than having to infer them from the
realizations of randomized decisions). There exists some set of actions
a_, that minimizes player i’s payoff given that he is allowed to choose
his best response to a_,. We say that the other players are minimaxing
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player i in this situation. Since the payoffs are in units of non-
transferable utility, they can be rescaled. Let us normalize to zero the
one-shot payoff for player i when he is being minimaxed, so

0= min max
a_; a;
Let W denote the convex hull of the set of all possible one-shot payoff
combinations and let W* denote the set of strictly positive n-vectors
lying in W (i.e. vectors that exceed the minimax levels in every
component). In the mixed extension of the game, all payoff combina-
tions in W are feasible.

Discounting has two important sources: the rate of time preference,
p, and the probability that the game is not repeated at the end of the
period, denoted w. Assume both p and @ to be constant. We will
represent the discount factor — the value of one dollar received after
one period - by 8, which equals one if there is no discounting. Because
of time preference, a player is indifferent between 1/(1 + p) now and 1
guaranteed to be paid a period later. With probability (1 — ) the later
payment actually takes place, so the player is indifferent between
(1- @)/(1+ p) now and the promise of 1 to be paid a period from
now conditional upon the game still continuing. The discount factor is
therefore

_(-w)
1+p) -

8

If there is discounting, the discounted sum of a player’s one-shot
payoffs is his natural objective function, but if the discount rate is zero,
the sum of the payoffs over an infinite number of periods is generally
infinite and we must find another maximand. There are two solutions
to this problem. The first solution, used by Fudenberg and Maskin, is
for players to maximize their average payoffs if there is no discounting
and the discounted value otherwise. The second solution is for players
to use an overtaking criterion, according to which a player prefers
payoff stream X to Y if there exists an integer 7 such that X’s sum of
discounted payoffs up to period ¢t exceeds Y’s sum for t> 7. The
overtaking criterion applies whether there is discounting or not.
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The game to be analyzed is the infinite-repetition of the one-shot
game just described, where the overall payoff is defined by the
one-shot payoffs, the discount rate, and the overtaking criterion. The
task is to characterize the set of subgame-perfect equilibria: Nash
strategy combinations such that in each of the infinite number of
subgames the remaining components of the strategies remain Nash.

The theorems in the next section will require one of two additional
assumptions: the Dimensionality Condition or the Two-Equilibrium
Condition.’

DIMENSIONALITY CONDITION. The space W* of feasible payoff
combinations that strictly Pareto-dominate the minimax payoff combi-
nations is nonempty and n-dimensional:

a:7(a)>0, and
Va:m(a)>0,Vi, 34", e>0: 7(d") = (w_,(a), m(a) — £)>0.

As an example of the Dimensionality Condition failing, consider the
n-person coordination game in which player i has the payoff «; = a if
every player picks the same action a €{0, 1], and =, = 0 otherwise. If
the players coordinate, their common payoff varies depending on the
coordinated action, but the Dimensionality Condition fails, because
the payoffs vary one-dimensionally and there are n > 1 players. Figure
1 contrasts the coordination game with the Prisoner’s Dilemma, which
does satisfy the Dimensionality Condition.

An alternative to the Dimensionality Condition is the Two-Equilib-
rium Condition, which says that the repeated game has some station-
ary perfect equilibrium preferred by each player to some other station-
ary perfect equilibrium (where the inferior equilibrium can be the same
for each player, or different).’

TWO-EQUILIBRIUM CONDITION. Given the discount factor 8,
the infinitely repeated game has at least two equilibria: a ‘desirable’
subgame-perfect equilibrium in which action combination a is played
each period; and for each player i a ‘punishment’ subgame-perfect
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(1, 1}
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(-2, 81— T,
(0.8, 0.8)
0.3, 0.3)
Ty (0,0 T,
(8, -2)
Satisfied Not Satistied

(Prisoner’s Dilemma) {Coordination Game)

Fig. 1. The Dimensionality Condition.

equilibrium with a lower payoff for him, in which action combination a
is played each period, where possibly a' = a’ for players i and j:

3G:Vi,3a" : m(a') < m(a).

The Two-Equilibrium Condition is not a primitive assumption. It
requires the game to have equilibria with certain properties, rather
than requiring the action spaces or payoff functions to have certain
properties. Good modelling practice generally calls for making only
primitive assumptions, but the Dimensionality Condition might be
false or hard to verify for some games for which the Two-Equilibrium
Condition clearly is true.

Although the Two-Equilibrium Condition is an alternative to the
Dimensionality Condition, they are not equivalent. The Dimensionali-
ty Condition does imply the Two-Equilibrium Condition (by virtue of
the Folk Theorem itself), but the converse is not true. The coordina-
tion game mentioned earlier did not satisfy the Dimensionality Condi-
tion, but it does satisfy the Two-Equilibrium Condition, because even
as a one-shot game, it has two Nash equilibria (in fact, it has a
continuum). To satisfy the Two-Equilibrium Condition, let @’ be ‘every
‘player chooses 0.3’ for every i, and let a be ‘every player chooses 0.8".
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The Dimensionality and Two-Equilibrium Conditions are useful for
constructing strategies that induce the players to punish anyone who
deviates from equilibrium. In the prisoner’s dilemma with the payoffs
of Figure 2 below, the threat can be to play actions yielding (-2, 8) or
(8, —2) if player 1 or 2 deviates. In the coordination game, the threat
can be to play actions yielding (0, 0) instead of (1, 1) if either player
deviates. The coordination game is a harder one in which to maintain
punishments, because the act of punishing hurts the punisher.

3. FOUR VERSIONS OF THE FOLK THEOREM

The most important of the several versions of the Folk Theorem in

Fudenberg and Maskin (1986) is restated below in the notation of this
7

paper.

1. THE FUDENBERG-MASKIN THEOREM (Fudenberg and Mas-
kin, 1986). For any (w%,...,w:) in W*, there exists a subgame-
perfect equilibrium of the infinitely repeated game in which player i’s
average payoff is w* if

(1) The Dimensionality Condition holds, and
(2) The discount factor is sufficiently close to one.

The various versions of the folk theorem are generally proved by
construction. The equilibrium strategy combination to support a de-
sired outcome has two parts: an equilibrium path, and a punishment to
be imposed on a player who deviates. For it to be a perfect equilib-
rium, the punishment must be credible, which is not immediate if
carrying out the punishment imposes costs on the punishing players.
The punishment part of the strategy must therefore also specify a
punishment for players who deviate by not punishing when they are
supposed to.

Fudenberg and Maskin’s proof of their theorem does not use the
obvious approach to constructing an equilibrium, which is to build an
ever-increasing series of punishments for deviation, deviation from
punishing, deviation from punishing non-punishing, etc., as Rubinstein
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(1979) and Benoit and Krishna (1985) do for undiscounted games.
That approach runs into difficulty when payoffs are discounted, be-
cause the severity of the punishments cannot increase fast enough as
the punishment phase becomes longer. The punishment must be
slightly more complicated: the length of the punishment increases if a
player deviates, but also whichever player last deviated bears the
heaviest punishment. A player who deviates by not punishing immedi-
ately starts earning a lower per-period payoff, besides lengthening the
number of punishment periods. The Dimensionality Condition is
needed to ensure that the deviator can be thus punished more severely
than the other players.

The first of the three new versions of the Folk Theorem is the
Stationary Actions Theorem, which appears very similar to the Fuden-
berg—-Maskin Theorem. The difference is that the Fudenberg—Maskin
Theorem says that any of a range of average payoffs can be sustained
in equilibrium; this theorem says that any of a range of stationary
action outcomes can be sustained in equilibrium.

2. THE STATIONARY ACTIONS THEOREM. In the infinitely re-
peated game, repetition of any action combination a* that yields per-
period payoffs in W* is the equilibrium path of some subgame-perfect
equilibrium if

(1) The Dimensionality Condition holds, and
(2) The discount factor is sufficiently close to one.

The proof of the Stationary Actions Theorem is very close to that of
the Fudenberg-—Maskin Theorem. Fudenberg and Maskin construct an
equilibrium-path strategy that yields a particular average payoff w*.
That equilibrium-path strategy can be the stationary action combina-
tion a*.

The Stationary Actions Theorem only applies to stationary strategies
yielding payoffs strictly greater than the minimax payoffs. The range of
observable equilibrium outcomes is much greater than this, as the next
two theorems show. Both of these next theorems have the same
conclusions, but they differ in their assumptions.
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3. THE DIMENSIONALITY THEOREM. In the infinitely repeated
game, any action combinations observed over any finite number of
repetitions T can be generated by a subgame-perfect equilibrium if

(1) The Dimensionality Condition holds, and
(2) The discount factor is sufficiently close to one.

4. THE TWO-EQUILIBRIUM THEOREM. In the infinitely re-
peated game, any action combinations observed over any finite number
of repetitions T can be generated by a subgame-perfect equilibrium if

(1) The Two-Equilibrium Condition holds, and
(2) The discount factor is sufficiently close to one.

The proof of the Dimensionality Theorem is based on the Fuden-
berg—~Maskin Theorem, which says that there exist equilibria that yield
per-period payoff vectors 7' and 7 with 7' > 7%, equilibria we shall
call E' and E> Let the observed sequence of actions up to period T
be denoted by a”. An equilibrium that generates a” is for player i to
(a) play his components of a” up to period 7, unless someone deviates,
(b) play according to E" after T if no deviations have yet occurred, and
(c) play according to E* immediately and forever if any player de-
viates. Player i has no incentive to deviate from (a) because whatever
T-period gain might be received is outweighed, if 8 =1, by an infinite
number of periods in which 77 is earned instead of #—and by
continuity, the gain is outweighed for some & <1 as well. Player i has
no incentive to deviate in (b) and (c) because E' and E* were chosen
to be subgame perfect equilibria.

Proof of the Two-Equilibrium Theorem is very similar, although
without the Dimensionality Condition one cannot invoke the Fuden-
berg-Maskin Theorem. But the Two-Equilibrium Condition does
specify that there exist equilibria E' in which @ is played and E* in
which g’ is played, with 7} > #>'. The argument then proceeds as in
the previous paragraph, but with the E” in phase (c) replaced by the
E* appropriate to player i.
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4. COMPARING THE THEOREMS

The Folk Theorem tells us that any pattern of behavior observed over
a finite number of periods of a supergame can be supported by some
equilibrium. Nothing can be excluded. What use is such a negative
result? One use is to warn that models with an infinite number of
periods can be misleading. It is not enough simply to find the perfect
equilibrium of such a game; the equilibrium must be supported by
further arguments, since the equilibrium is far from unique. The
theorem’s value is to provoke close scrutiny of infinite horizon models
so that a modeller cannot escape showing not only that the equilibrium
he favors exists, but why it is better than the multitude of other
equilibria. He must go beyond satisfaction of the standard technical
criteria. .

The Fudenberg—Maskin Theorem characterizes the entire game, but
the characterization says nothing about any finite part of the game. A
given average payoff can be generated by any of a wide array of
actions, because the action in any one period has an imperceptible
effect on the average payoff. The Dimensionality and Two-Equilib-
rium Theorems, on the other hand, although they characterize any
finite part of the game, say little about the payoffs. Since only finite
amounts of time are observable, the modeller may care only about a
subset of the periods of play, even if the player has a low enough
discount rate that such a subset is unimportant to him. One of the most
important lessons of the Folk Theorem is that some models are empty
because they have no observable implications. Since average payoffs of
an infinite game are never observed, previous versions of the Folk
Theorem have not really made this point.

It is also important to realize that the first T periods of an equilib-
rium might look nothing like the rest of it. A casual reading of the
Fudenberg-Maskin Theorem and the Stationary Actions Theorem
might conclude that although any payoff in W* is possible, the players
will at least choose actions that guarantee them their minimax payoffs
in every period. One might also wonder why any but the Stationary

-~ Actions Theorem is needed, since it characterizes both the entire game
and every part of the game. But it considers only stationary strategies,
just as the Fudenberg-Maskin Theorem only considers average

Copyright (¢) 2004 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



156 ERIC RASMUSEN

payoffs. While it justifies a wide class of equilibria — stationary equilib-
ria with payoffs exceeding the minimax level —there exist other
equilibria which are nonstationary. In particular, the Dimensionality
and Two-Equilibrium Theorems. justify equilibria with payoffs below
the minimax level in some periods. These equilibria are nonstationary,
and the low payoffs are only transitory, so they are excluded from
consideration by the first two theorems.

All four theorems specify that the game be infinitely repeated, not
finitely repeated many times. For some games, similar results can be
obtained for finite repetitions. This is not true of all games: Moreaux
(1985) has shown that if a one-shot game has just one Nash equilib-
rium, then those actions form the unique perfect equilibrium outcome
of the finitely repeated game. But Benoit and Krishna (1985) show
that when there is no discounting and the one-shot game has multiple
equilibria, the repeated game has many equilibrium outcomes. The
reasoning is similar to the Two-Equilibrium Theorem above: when a
game has two equilibria, other equilibria can be constructed using the
differential between the two fundamental equilibria as a punishment
for deviation.

4.1. The Assumptions

Having discussed the theorems, it will now be easier to explain why the
various assumptions are important. Allowing discounting is important
to show that there is no discontinuity at the discount factor of one. If a
particular undiscounted game has a large number of equilibrium
outcomes, the theorems say that any outcome can survive adding a
little discounting to the model. True, the equilibria are discontinuous
at some discount factor less than one (as will be seen in the Prisoner’s
Dilemma in Section 5). But this is acceptable because a repeated game
with heavy discounting should have the same properties as the one-
shot game, and some discount factor must divide heavy from non-
heavy. A little discounting, however, seems to be unimportant, in
strong contrast with making the number of repetitions infinite instead
of merely large. The unimportance of a little discounting also contrasts
with discounting’s importance in bargaining games, which can have a
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continuum of perfect equilibria with zero discounting, but a unique
equilibrium with a small amount (Rubinstein, 1982).

A constant probability of the game ending at each repetition has the
same effect as time preference because it makes present payments
preferable to future payments. A difference in interpretation is that
the ending probability ensures that the game ends in finite time with
probability one, or, phrased less dramatically, that the expected
number of repetitions is finite.* The game behaves like a discounted
infinite game because the expected number of future repetitions never
diminishes, no matter how many have already occurred. The game still
has no ‘last period’. Imposing a last period, no matter how far beyond
the expected number of repetitions, would still radically change the
game.” Game G, that lasts 8 periods is very different from Game G,
that lasts an expected 8 periods because of an ending probability of
about 0.17 per period; after 7 periods, G, is a 1-period game, while
G,, if it has not yet ended, is still expected to last 8 more periods.

All of the theorems could be adapted to apply even if the rate of
time preference and the ending probability varied over time, so long as
both remained sufficiently small. If they do vary, simply take p and w
to be the maximum values of the discount rate and the ending
probability. The proofs hold a fortiori: if the maximum values are
small enough, any outcome is possible; otherwise, further computation
is necessary to see whether the appropriate average future rates are
small enough. The point is especially important with respect to the
ending probability: if the ending probability approaches one over time
(as we might expect of a mortality rate), the Folk Theorem fails to
apply, even if the probability never reaches one.

In some games, the question arises of whether correlated strategies
matter to the Folk Theorem. A player employing a correlated strategy
makes his action contingent on a signal which some or all players can
observe (Aumann, 1974). Such signals matter because they may allow
players to coordinate more effectively in minimaxing a deviator. This
affects the Fudenberg—Maskin and Stationary Actions Theorems be-
cause the feasible payoff set, W*, depends on the minimax strategies.
Disallowing correlated strategies would also restrict the applicability of
the Dimensionality and Two-Equilibrium Theorems, but in a different
way. Those theorems employ pure strategies for the first T periods, but
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the use of correlated strategies can increase the severity of the
out-of-equilibrium punishments, so it affects the number of periods, T,
and the discount factor, 8, for which a particular pattern of actions can
be supported in equilibrium. All the theorems remain valid if corre-
lated strategies are disallowed, but their range of applicability shrinks.

5. AN EXAMPLE: THE PRISONER’S DILEMMA

The Prisoner’s Dilemma illustrates many of these points. Let us use
the payoffs shown in Figure 2. The minimax payoff is 0, which each
player can guarantee himself by playing Fink, and the maximum
possible payoff is 8. The game also allows worse-than-minimax
payoffs: a player who chooses Cooperate when the other player
chooses Fink receives —2.

The Prisoner’s Dilemma is a good example of the difference be-
tween a finite and an infinite number of repetitions. No matter how
large the number of repetitions, if it is finite the outcome (Fink, Fink)
is the unique perfect equilibrium outcome (and, in fact, the unique
Nash outcome). The argument for this, older than Selten (1978) but
known as the Chainstore Paradox after his article, is as follows. In the
last period, Fink is the dominant strategy, since that subgame is
identical to the one-shot game. In the two-period subgame starting in
the next-to-last period, it is common knowledge that both players will
fink in the last period, so cooperating has no reputational or other
advantages, and both players fink. In the subgame starting yet one
period earlier, both players know that present cooperation will not

Column
Cooperate Fink
Cooperate 7,7 -2,8
Row
Fink 8, -2 0,0

Payoffs to: (Row, Column).

Fig. 2. The Prisoner’s Dilemma.
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induce future cooperation, so they fink then also, and the argument
can be carried back to the first period.

The argument for why (Fink, Fink) is the unique Nash outcome (not
just the unique perfect outcome) is different. Subgames are unim-
portant to whether a strategy combination is a Nash equilibrium, but
we can rule out successive classes of strategies from being Nash. No
strategy in the class which calls for Cooperate in the last period can be
Nash, because the same strategy except with Fink in the last period
would dominate it. But if both players have strategies calling for
finking in the last period, then no strategy which does not call for
finking in the next-to-last period is Nash, because the same strategy
except for Fink in the next-to-last period would dominate it. The
argument can be carried back to the first period, ruling out any class of
strategies that does not call for finking everywhere along the equilib-
rium path.'

The finitely repeated Prisoner’s Dilemma thus has a simple set of
perfect equilibria. The theorem of Benoit and Krishna (1985) men-
tioned earlier fails to apply, because the one-shot Prisoner’s Dilemma
has a unique Nash equilibrium; the theorem of Moreaux (1985)
therefore does apply, which is another way to know that (Fink, Fink)
is the unique perfect equilibrium of the finitely repeated game.

The infinitely repeated Prisoner’s Dilemma has a large set of equilib-
ria. To apply the four theorems presented for infinite games, we must
see which conditions are satisfied. The Dimensionality Condition is
satisfied because convexifying the four payoff combinations (to allow
for mixed strategies) generates a two-dimensional space of which W*
in Figure 1 is a subset. The Two-Equilibrium Condition is satisfied
because Pareto-ranked equilibria can be easily constructed for the
repeated game. One equilibrium is repetition of (Fink, Fink), since
any Nash equilibrium of a one-shot game is a perfect equilibrium of
the infinitely repeated game. A second equilibrium strategy is (Cooper-
ate until someone finks; then always fink), which is known as the grim
strategy. The grim strategy supports an equilibrium with cooperation
as the outcome, so its payoff combination of (7,7) Pareto-dominates
the payoff combination of (0,0) from Always Fink. Hence, the
Two-Equilibrium Condition is satisfied.

The grim strategy does not support an equilibrium unless the
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discount factor is close enough to one. We can calculate the critical
value of the discount rate for the parameters of this game. The
equilibrium payoff is the current payoff of 7 plus the value of the rest
of the game, which is 7/r. If Row deviates by finking, he receives a
current payoff of 8, but the value of the rest of the game falls to 0/r.
The critical value of the discount rate at which finking becomes
profitable is found by solving the equation 7+ 7/r =8+ 0/r, which
yields r =7 and & = 0.125. With the payoffs of Figure 2, finking is not
tempting at moderate discount rates.’

Since both the Dimensionality Condition and the Two-Equilibrium
Condition are satisfied for discount factors between 0.125 and 1, all
four Folk Theorems apply to the Prisoner’s Dilemma. The Fudenberg—
Maskin Theorem says that any average payoff in the darkly shaded
area in Figure 1 (excluding the axes, but including the outer boundary)
can be achieved in a perfect equilibrium. As explained earlier, this says
nothing about the particular actions, because a given average payoff
can be achieved via many different combinations of Fink and Co-
operate.

The Stationary Actions Theorem does describe possible equilibrium
actions over the entire game and any T-period subset. It implies, for
example, that there exists a perfect equilibrium in which both players
always choose Cooperate and gain the payoff of 7. It is subject to the
same limitations as the Fudenberg—Maskin Theorem, however; it only
applies to strategies that generate payoffs lying in the darkly shaded
area of Figure 1. Moreover, it only describes stationary strategies.

The Dimensionality and Two-Equilibrium Theorems characterize a
particular T-period portion of the game, over which the outcome can
be any pattern of Fink and Cooperate. Outside of those T periods, the
outcome takes whatever form necessary to support the desired pattern.
If, for example, the discount rate is zero, the theorems say that the
pattern (Fink, Fink; Cooperate, Fink; Fink, Cooperate; Fink, Cooper-
ate; Cooperate, Fink) is an equilibrium outcome for the first five
periods — despite the fact that (Fink, Cooperate) yields a worse-than-
minimax payoff to player 2. One equilibrium which generates this
outcome is for the players to adopt the pattern’s actions as their
strategies for the first five periods, to cooperate in the succeeding
periods, and to always fink if either player deviates. This equilibrium
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also shows that many equilibria can map to a single average payoff.
The limiting average payoff is (7,7), which is identical to that for the
grim strategy equilibrium. Under the grim strategy, both players
always cooperate, but the difference in the first five periods is irrele-
vant to the limit of the average payoff as the number of periods
becomes infinite.

None of these versions of the Folk Theorem say that any strategy
can be part of an equilibrium, only that a wide range of actions and
payoffs can be. The strategy Tit-for-Tat, for example, calls for a player
to start by playing Cooperate and then in period ¢ to imitate the other
player’s action of period ¢ — 1. The equilibrium outcome is (Cooperate,
Cooperate) in each period, which is indeed supported by a perfect:
equilibrium, but Tit-for-Tat itself is not perfect for the prisoner’s
dilemma of Figure 2. Consider the out-of-equilibrium subgame in
which player Row has finked and Column has cooperated in period
t—1. Tit-for-Tat calls for alternating (Cooperate, Fink) with (Fink,
Cooperate), a pattern which generates low payoffs for both players.
But player Column would gain by deviating from Tit-for-Tat, ignoring

* Row’s Fink so that the actions would return to (Cooperate, Cooperate)
in every period, which has higher payoffs. Tit-for-Tat is therefore not
perfect, even though it would support (Cooperate, Cooperate) if it
were."?

Although the outcome (Fink, Fink) for every repetition can be
generated by a perfect equilibrium, this is also unimplied by any of the
theorems. The Fudenberg—Maskin Theorem does not characterize
actions, and even if it did, neither it nor the Stationary Actions
Theorem apply to equilibria with average payoffs of zero, which is
outside of W*. The Dimensionality and Two-Equilibrium Theorems
are not so limited, but they only say that (Fink, Fink) could be
observed for T periods. Thus, the outcome of infinitely repeated
(Fink, Fink) must be justified by construction.

6. SUMMARY

During a finite portion of an infinitely repeated n-player game, a great
variety of action patterns can be observed in perfect equilibrium. This
is true even if payoffs are discounted and the game has some probabili-
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ty of ending after every period. In the new theorems presented here,
one of two technical conditions must be satisfied: the modeller must
either discover at least two perfect equilibria by construction, or show
that the payoff space has the dimensionality of the number of players.
This done, the theorems tell him that the equilibrium can be character-
ized by a large number of stationary action combinations or an even
larger number of action combinations for a limited number of periods.

NOTES

* I would like to thank an anonymous referee, Sushil Bikhchandani, David Hirshleifer,
David Levine, Thomas Voss, and participants in the UCLA Game Theory Seminar for
helpful comments.

! Aumann (1981).is an earlier survey, which contains the Aumann—Shapley (1977)
proof of a perfect equilibrium Folk Theorem. More recent papers include Abreu (1988),
Benoit and Krishna (1985, 1987), Cave (1987), Friedman (1984), and Guth, Leininger,
and Stephan (1988). Chapters 4 and 5 of Rasmusen (1989) discusses applications.

* Anocther category of results is the extension of the Folk Theorem to more complicated
kinds of repeated games such as finitely repeated games of incomplete information
(Fudenberg and Maskin, 1986) and games with a state variable which changes from
repetition to repetition (Lockwood, 1988).

* One version not stated in terms of payoffs is in the unpublished Rubinstein {1977),
which applies to stationary strategies without discounting.

* The finiteness of M, avoids the technical problems of working with the mixed
extensions of games with continuous action sets. Finiteness also helps ensure existence of
equilibrium in the one-shot game.

> These are not necessary conditions. Fudenberg and Maskin note that in two-player
games, for example, neither the Dimensionality nor the Two-Dimension condition need
be satisfied for their theorem’s conclusion to be valid.

¢ Note that the Two-Equilibrium Conditions also implies that the difference between the
two payoffs increases as the discount rate declines, since the per-period payoffs are
constant. Hence, as the discount rate declines, the punishment increases.

7 This is Theorem 2 in Fudenberg and Maskin (1986, p. 544).

® It does not matter if lump sum payments are made to players whenever the game ends.
They have no control over the ending time, so such payments are irrelevant to their
behavior unless there are income effects.

® The similarity of infinite models to stationary possibly-ending models is also well-
known in the context of speculative bubbles (Blanchard, 1979).

® Although Always fink is a Nash strategy for the finitely repeated game, it is not
necessarily a dominant strategy, except in the one-shot game. A dominant strategy is a
strictly best response to any other strategy, but Always Fink might not (depending on the
discount factor) be the best response to various non-Nash strategies such as (Cooperate
until the other player finks, then fink for the rest of the game).
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" The critical discount rate does not depend on Row’s one-shot payoff when he
cooperates and Column finks, a value of —2 in Figure 2. That number is irrelevant to
Row’s decision as to whether or not to deviate from the cooperative equilibrium,
because it cannot be reached if Row alone deviates.

12 Tit-for-tat is not perfect for the Prisoner’s Dilemma with the parameters of Figure 2,
but for very special discount rates it can be perfect in Prisoner’s Dilemmas with other
parameters. '
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