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ARE EQUILIBRIUM STRATEGIES UNAFFECTED
BY INCENTIVES?

Jack Hirshleifer and Eric Rasmusen

ABSTRACT

In a mixed-strategy Nash equilibrium, changing one player’s payoffs affects
only the other player’s equilibrium strategy mix. This ‘Payoff Irrelevance
Proposition’ (PIP) appears to undercut the main foundations of economic
policy analysis since, allegedly, equilibrium behavior will not respond to
changes in incentives. We show, in contrast, that: (1) When the policy-maker
has the first move in a sequential-move game, the PIP does not hold. (2) Even
in a simultaneous-move game, the PIP holds only when the policy space is
discrete, and for sufficiently small payoff revisions. Thus, incentives do
generally affect behavior in equilibrium.

KEY WORDS e game theory ¢ incentives and payoffs ® mixed strategies
e the Police Game

At a mixed-strategy Nash equilibrium of a two-person non-cooperative
game, changing one player’s payoffs affects only the other player’s equilib-
rium strategy mix.' A series of papers by George Tsebelis (1989, 1990a,b)
uses this well-known theorem to draw startling inferences about policies
aimed at deterring undesired actions. Among the assertions are that: (1) in
crime control, increasing the size of penalties will not reduce the number
of offenses; (2) in international affairs, imposing economic sanctions will
not lead the targeted nation to modify its actions; and (3) in hierarchical
systems, supervision will not improve the behavior of subordinates. The
policy-maker, despite being able to influence the payoffs, supposedly cannot
affect the actual equilibrium choice (mixed strategy) of the targeted parties.
We call this assertion the Payoff Irrelevance Proposition (PIP).

The PIP, to the extent that it is applicable in some social context, evidently
undercuts standard economic reasoning about how behavior might be influ-
enced by policy-makers. In analyzing the trade-off between probability of
detection and size of penalties, for example, Becker (1968) and Ehrlich
(1973) presumed that incentives do affect the choices of rational criminals;
their analyses require drastic revision if sanctions do not affect how

* We thank George Tsebelis, Hilmar Doering and two anonymous referees for valuable
suggestions and comments. Ting Fang Chiang provided helpful assistance with the diagrams.
Eric Rasmusen thanks the Olin Foundation for financial support.

1. Provided that the changes in the first player’s payoffs do not affect the elements entering,
with non-zero probability, into his strategy mix.
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criminals behave. More generally, if the PIP applies, the usual arguments for
and against policy measures like tariffs, taxes, subsidies and regulations are
all gravely weakened.” (The PIP does not imply that policy is totally
useless, however. If criminal penalties are increased, although the PIP
predicts that the amount of crime will not change, the police may be able
to economize by investing less effort in enforcing the laws.)

Rising to the challenge, we show that the PIP is applicable only in what
are, from a policy point of view, very special and indeed limiting cases.
So the foundation of the economic approach to policy - the premise that
incentives do affect the equilibrium behavior of impacted parties - is solid
after all. While other critics® have argued that policy situations ought to
be modelled as repeated games or that two-person games are unrealistic,
our analysis is based upon the order of moves and the number and range
of allowed strategies.

I. The Police Game and the Payoff Irrelevance Proposition (PIP)

In the characteristic situation (‘the Police Game’) described by Tsebelis,
the police are the policy-making authority, choosing between patrolling to
enforce the law and not patrolling (strategies P and NP). The potential cri-
minals choose between committing and not committing crimes (strategies C
and NC). Table 1 shows the respective payoffs abstractly. Following
Tsebelis’s assumptions, for the criminals ¢, > ¢; and ¢, > ¢,, while for the
police p, > p, and p, > p,. (The criminals will choose C if they know the
police are not patrolling, but NC if the police are patrolling; the police will
choose P if they anticipate that crimes will be committed, but NP if they do
not expect any offenses.) Table 2 is a numerical illustration consistent with
these specifications, bigger numbers representing more desired outcomes.

This is a discoordination game, with no Nash equilibrium in pure
strategies. As the arrows in the tables indicate, one player or the other will
want to deviate from any combination of pure strategies. Following standard
procedures, the mixed-strategy equilibrium (where 6, is the probability that
criminals use their C strategy and 6, is similarly the probability that police
use their P strategy) is given by:

2. There is a seeming resemblance between the Payoff Irrelevance Proposition and ‘rational
expectations’ theorems (for example, Barro, 1974, on the ineffectiveness of fiscal policy).
But the similarity is superficial. The rational expectations argument is that policy is ineffective
because it has been fully anticipated; strategic uncertainty is not involved. The Payoff
Irrelevance Proposition, in contrast, is based upon the nature of the mixed-strategy equilibrium
under strategic uncertainty.

3. See Bianco et al. (1990).
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Table 1. Payoffs in the 2 x 2 Police Table 2. The 2 x 2 Police Game-

Game Numerical Example
Police Police

| P P

NC €3:Ps © €, P
Criminals ! 1 Criminals

C C4rPy 7 C1Py

>0y, € >0

Ps > Py, P2 > P

0. = (ps — )/ (P, — P, + P — D3)
(1)

0,= (ca—c)/(cy—c +c—¢y)

It is easy to verify that, for the specific numerical matrix of Table 2,
6.=6,=1/2.

Equations (1) show the Payoff Irrelevance Proposition at work. The
probability mixture chosen by the criminals is a function only of the police
payoffs, and that of the police is a function only of the criminal payoffs.
If penalties for crime were increased, therefore (that is, if ¢, were reduced),
6. would remain the same but 6, would change. The probability of com-
mitting crime would be left unchanged in the new equilibrium; only the
probability of patrolling would change.

Intuitively, the reasoning underlying the PIP is the following. At the
mixed-strategy equilibrium, the criminals are willing to choose randomly
between C and NC, so it must be that their expected payoffs from C and NC
are identical. After a change in the criminals’ payoff parameters - say an
increase in the penalties for crime - since C and NC would no longer yield
the same expected payoffs, the initial response of the criminals would be
to choose one or the other. So, if the overall conditions still dictate a mixed-
strategy equilibrium, it must be that the police behavior changes suitably.
Specifically, the police will change their strategy mix to make the criminal
yields from choosing C and NC once again equal. And in fact the same
exact proportions of C and NC must be restored in order to keep the police
indifferent between their strategies P and NP.

II. Simultaneous versus Sequential Play

The first substantive issue to be addressed is whether the Police Game ought
to be modelled as a simultaneous-play or sequential-play game. These terms
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are to be understood in an informational rather than a calendar-time sense.
If the police move first in time but their chosen move remains unknown
to the criminals, the two sides are still effectively playing a simultaneous-
move game. It is the asymmetric ability of one side to respond to the other’s
known choice that characterizes the sequential-play game. Put another way,
in a simultaneous-move game both sides have to behave strategically,
whereas in a sequential-play game only the first-mover is involved in a
strategic choice - the last-mover has all the information needed for making
a simple optimizing choice.

In the nature of the case, policy-makers like the police in the Police Game
have to reason strategically. In deciding whether to allocate more resources
to the south end of town than to the north end, the police must rationally
ask themselves how potential offenders would respond. If the decision is
to patrol the north end more heavily, the criminals, it can usually be anti-
cipated, will become aware of this and shift their depredations to the south
end.’ The criminals, on the other hand, as individually small actors, will
normally optimize in a non-strategic way, like ‘price-takers’ in micro-
economic theory. An individual offender could not reasonably say to
himself, ‘If I shift to the south end of town, the police will change their
planned allocation of effort to come after me there, so | won’t derive any
advantage.’ Most criminal activities - from murder and theft to fraud and
insider trading - are engaged in by decentralized actors behaving non-
strategically. (As an evident exception, however, if crime were cartelized
through a Mafia-type organization, both the police and the criminal planners
would have to play strategically.)

Setting this exception aside, the Police Game should normally be analyzed
in terms of a sequential-play protocol in which the authorities make the
initial move.’ Applying the usual ‘subgame-perfect equilibrium’ concept,
in which the first-mover makes a rational choice on the assumption that
the last-mover will also behave rationally, we see in Table 1 that the police
would choose P if p; > p, and NP if the opposite holds. That is, the
police would enforce the law if they prefer the outcome ‘Patrol, Not commit’
over ‘Not patrol, Commit’ - while if their preferences were reversed, they
would not patrol. In the specific illustration of Table 2 the police have
the first of these rankings (p, > p,), with the desirable consequence that

4. The authorities may well attempt to publicize their actions. One of us recently heard a
radio ad of the Chicago Transit Authority advising criminals (truthfully?) that enforcement
levels had been increased.

5. The corresponding assumption, that one firm is the ‘leader’ in setting output quantity,
leads to the (asymmetrical) Stackelberg solution in duopoly theory. The simultaneous-play
protocol, that is, the assumption that each firm chooses its output in ignorance of the other’s
decision, leads to the (symmetrical) Cournot equilibrium.
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all crimes are deterred. But given the cost of patrolling this may not
always be the case. As an economic choice, the community in general and
the police as their representatives routinely tolerate relatively minor crimes
such as possession of small amounts of marijuana. For such offenses they
may prefer ‘Not patrol, Commit’ - p, > p,.°

Whichever way the ordering goes for different types of offenses, the
crucial point is that in this sequential-move game’ the PIP generally fails.
Specifically, we saw that under the conditions of Table 1 the police would
patrol if they prefer the outcome ‘Patrol, Not commit’ over ‘Not patrol,
Commit’ - while if their preferences were reversed, they would not enforce
the law. It is true, however, that a change in the criminal payoffs will
still leave the criminals’ optimal responses to the prior police moves
unaffected - provided that the payoff changes do not alter the assumed
rankings ¢, > ¢, and ¢, > ¢, which define the Police Game. But if a payoff
change were to modify these rankings, as it easily might, then the criminal
last-move responses and the police first-move actions will both typically be
affected.

This conclusion will be stated as our first listed result:

RESULT 1. Most often, policy interactions are better modelled as sequential
games, not as simultaneous-move games. In such sequential games, the
Payoff Irrelevance Proposition does not generally hold. Changes in own-
payoffs may affect the choices of the policy-making authorities (who have
the first move), of the targeted individuals and groups (who respond non-
strategically), or both.

6. Instead of the numbers in Table 2, for example, the police payoffs could be:

NP P
NC |4 1
cl2 3

Here p, = 2 exceeds p, = I.

7. Tsebelis (1989: 83) concedes that, in the Police Game, it is ‘more realistic’ to assume that
the police have the first move, so that the conditions for the sequential equilibrium apply.
But he incorrectly asserts that the sequential solution will be the same as the solution to the
simultaneous-play game. His reasoning appears to be based on the premise that the police,
although having the first move, would find it advisable to keep their strategy choice secret.
This would in effect throw the parties back into the simultaneous-move game, with the same
solution as before. But secrecy (giving up the first move) is not generally more profitable
than making the first move and openly announcing it. In the numerical illustration of Table 2,
for example, the best sequential play leads to the outcome ‘Patrol, Not commit’ with a payoff
to the police of p, = 3. The simultaneous-play equilibrium 6, = 6, = 1/2 achievable under
secrecy has a payoff to the police of only 2 1/2. Thus, in this case, the police would be unwise
to sacrifice the advantage of the first move.
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II1. Simultaneous-Play Equilibrium with a Strategy Continuum

In the preceding section we indicated that policy-makers normally will be
playing a sequential-move rather than a simultaneous-move game with the
affected parties. There are, however, a number of important exceptions,
among them: (1) if the targeted party or parties are as much of a centrally
organized entity as the policy-makers themselves, and (2) if the policy-
makers, although having the option of the first move, find it more advan-
tageous to act secretly. In this section we are postulating that one or the
other of these exceptions applies, so that the simultaneous-move protocol
is indeed applicable. Even so, we shall see, the PIP has only a limited range
of applicability. .

A natural way to approach the simultaneous-move Police Game is to
postulate that both police and criminals can choose over a strategy con-
tinuum. Instead of the restriction to the discrete options C versus NC on the
one side and P versus NP on the other, let criminals choose crime level
0 < C < 1 while the police simultaneously choose patrolling level 0 < P < 1.

A standard method of solution for games with continuous strategy spaces
is to determine the Reaction Curves showing each side’s optimal action as
a function of the other’s choice. The intersection of the Reaction Curves
represents the simultaneous-play Nash-Cournot equilibrium. Some simple
examples are illuminating.

Example 1. Suppose the payoff functions, for the criminals and police
respectively, are:

V.=aC-8C/2-~P

()
V,=a,P—-8,P/2-~,C
where the Greek letters signify positive parameters. Here each side’s payoff
is a quadratic function of its own level of activity and a negative-linear
function of the opponent’s level of activity.
The implied Reaction Curves are:®

RC.:C = a,/B,

3)
RC,: P = a,/8,

In-this first example, even though the payoff V. varies negatively with P,
the chosen level of crime C is independent of P. Instead, it responds only
to the criminals’ own payoffs: C increases as the criminals’ ‘gain parameter’
«, rises and decreases as their ‘diminishing returns parameter’ 3, rises.

8. Found by setting the first derivatives dV./dC and dV,/aP equal to zero and solving for
C and P.
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Figure 1. Simultaneous-Move Police Game with Strategy Continuum: Effect
of Increased Criminal Payoffs when Equilibrium Strategy Choices Depend
Upon Own Payoff Parameters Only

Similarly, the patrolling effort P will depend only upon the police ‘gain
parameter’ «, and ‘diminishing returns parameter’ §,. As shown in
Figure 1, the criminals’ Reaction Curve RC. is the solid horizontal line at
C = a./B,, while the police Reaction Curve RC, is a vertical line at
P = o,8,. The equilibrium is of course at the intersection of the two
Reaction Curves, the solution being:

*=a./B, and P* =a,/B, 4)

Now we ask, what if the criminals’ payoff parameters were to change?
The dashed line in Figure 1 shows how the criminals’ Reaction Curve RC.
shifts in response to an increase in the ratio «./8, - which of course could
be the consequence either of a rise in the ‘gain parameter’ o, or a fall in
the ‘diminishing returns parameter’ 3.. Evidently, the criminals’ Reaction
Curve shifts upward so that the new equilibrium involves a larger amount
of criminal activity with unchanged police activity. While this is a special
case, it demonstrates that, to the exact contrary of the PIP, in the
simultaneous-play game it is perfectly possible to have each side’s optimal
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choice depend solely upon its own payoff parameters and not at all upon
the opponents’ payoffs.’

Nevertheless, that the PIP might possibly hold is illustrated by a second
example.

Example 2. Suppose the payoff functions, for the criminals and police
respectively, are instead:

V= (o, = B.P)C = ~.P

3)
V,=(-a,+8,C)P—-~,C

P

with v, > 8, and all the parameters positive as before. Maximizing each
payoff with respect to its control variable leads to the solution:

C*=a,/8, and P*=0,/B, (6)

Here the equilibrium strategy for each side depends only upon the
opponent’s payoff parameters. Specifically, as shown in Figure 2, a rise in
a. or a fall in 3, leads only to an increase in police activity P*.

It is of interest to remark on several aspects of this second example:
(i) The PIP applies here as a pure-strategy equilibrium in a continuous
strategy space, rather than as a mixed-strategy equilibrium in a discrete
strategy space. (ii) The payoff functions have the undesirable feature of
failing to display diminishing returns. The marginal return to police activity,
for example, varies with C but remains constant as P increases. (iii) The
implications for the respective Reaction Curves, as pictured in Figure 2,
are rather strange. The police, for example, will respond with P = 0 to any
C < C* and with P =1 to any C > C*. So a change in crime level C
will, over most of its range, lead to no response at all, but at the critical
point C = «,/f3, the tiniest change in C would trigger a total swing in police
activity toward one extreme or the other. So the two Reaction Curves would
each be a discontinuous step-function, the intersection being at the respective
points of discontinuity.

We have seen that it is possible to have payoff functions in which
the equilibrium levels of activity depend only on the player’s own payoff
parameters (Example 1); or, less plausibly, only upon the opponent’s
payoff parameters (Example 2). The general and most reasonable case,
of course, is where the equilibrium depends upon the payoff parameters
of both sides. Typically, the Reaction Curves will be sloping as illustrated
in Figure 3. Consistent with the spirit of the Police Game, the criminals’

9. The criminals are maximizing V, with respect to C while the police are maximizing V,
with respect to P. It is easy to see that the first derivative a4V, /3C does not depend upon
P, and similarly dV,/ dP does not depend upon C.
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Figure 2. Simultaneous-Move Police Game with Strategy Continuum: Effect
of Increased Criminal Payoffs when Equilibrium Strategy Choices Depend
Upon Opponent’s Payoff Parameters Only

Reaction Curve RC, would be negatively sloped: as the police increase
patrolling, the criminals prefer a lower level of criminal activity. And,
correspondingly, the police Reaction Curve RC, would be positively
sloped: as offenders increase C, the police would prefer a higher level of
patrolling.

Example 3. The illustration in Figure 3 is based upon the payoff functions:

V, = a,C — 8,PC%/2

3

)
V,= —a,P — 3,C/P

where all the constants are positive as before.

These payoff functions retain the desirable property that the marginal
returns, to both the criminals’ efforts C and the police efforts P, are always
diminishing. The implied Reaction Curves are:

RC.: C = a./(B.P)

8
RC,: P = (B,C/a,)"? ®
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Figure 3. Simultaneous-Move Police Game with Strategy Continuum: Effect
of Increased Criminal Payoffs when Equilibrium Strategy Choices Depend
Upon Both Sides’ Payoff Parameters

The equilibrium levels of C and P, obtained by solving equations (8)
simultaneously, are:

C*

(ala,/BIB,)""

9
P* = (a.B,/a,B,)"" ©

The solid curves in Figure 3 correspond to the parameter values
(o, Be, @,y B,) = (1,4,2,1). The equilibrium strategy-pair, in pure stra-
tegies of course, is then C* = P* = 1/2. That each party’s equilibrium
choice does depend upon its own as well as upon the other’s payoff para-
meters is evident from the form of equations (9). If, for example, the
criminal ‘gain parameter’ «, rises from 1 to 2, the criminals’ Reaction
Curve RC, shifts upward as illustrated by the dashed curve in the diagram.
At the new solution, (C*, P*) = (.7937,.6300). Thus, an increase in
criminal payoffs has led to a rise in both the amount of crime and the
amount of patrolling. Summarizing:
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RESULT 2. In simultaneous-move games, if the players have continuous
strategy spaces there will typically be a pure-strategy equilibrium for
which the Payoff Irrelevance Proposition does not generally hold."

The paradoxical PIP result, we can now see, is essentially an artifact due
to lumpiness. Rational choice involves trade-offs, and lumpiness of the
options available reduces what can be done in the way of trade-offs. Suppose
a consumer initially finds apples too expensive to buy, but then the price
falls. If the choice is between buying 50 apples or none, such a consumer
may still take none - whereas, offered the opportunity of buying single
apples, he might buy two or three instead. Similarly, a choice between a
discrete C or NC is less susceptible to the influence of payoff changes than
a choice over the entire range of options in between.

IV. Simultaneous-Play Equilibrium with Discrete Strategies

Still under the simultaneous-play protocol, suppose now that while the
underlying situation remains the continuous-strategy space as in the figures,
for some reason only selected discrete options and not the entire continuum
are available to the parties. As can be seen, the case for the PIP is strongest
here. It is convenient to state the result first, with the development to
follow.

RESULT 3. The Payoff Irrelevance Proposition may or may not hold for
simultaneous-move games if the strategy space is discrete. For it to hold,
the payoff changes must be ‘sufficiently small’ (in a sense to be made
precise below).

Let equations (7) continue to represent the payoff functions, as in our
previous illustration. But now suppose that the parties can no longer choose
C and P over the continuum. Instead, C for the criminals and P for the
police must be chosen from the set {.2,.4,.6,.8,1}. As can be seen in
Figure 3, the strategy options .4 and .6 for each side are the ‘immediate
neighbors’ bracketing the (no longer available) continuous-strategy equilib-
rium choices C* = .5 = P*. It is a plausible procedure, valid here though
unfortunately not universally correct, to consider only these immediate

10. A technical qualification: the Reaction Curves must actually intersect in the interior
of the strategy space. If they do not, there may be a corner solution in which players choose
extreme behavior that may not alter when parameters change. If electrocuting burglars reduces
burglary to zero, then increasing the penalty to boiling in oil will have no effect. Sufficient
conditions for an interior intersection are that the strategy sets be compact and convex, and
that a player’s payoff be quasi-concave in his own strategy (see Rasmusen 1989: 124-5).
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Table 3. The Police Game with Five Discrete Strategies

Police
2 4 K .8 |
2 .184, —1.4 .168, —1.3 152, —1.533 136, —1.85 12, =22
-3 4 336, —2.4 272, - 1.8 .208, —1.867 144, -2.1 .08, —2.4
g .6 456, —3.4 312, =23 .168, —2.2 .024, —2.35 -.12, =26
C .8 544, —4.4 .288, —2.8 .032, —2.533 —.244, -2.6 —.48, —2.8
1 .6, —5.4 .2, =33 -.2, —2.867 —-.6, —2.85 -1, =3
Table 4. Strategies of Table 3 That Are Table 5. A Truncated Strategy Set
Used in Equilibrium from Table 3
Police Police
| 4 .6 I 4 1
4 272, - 1.8 .208, —1.867 4 272, —1.8 .08, —2.4
Criminals Criminals
.6 312, =23 .168, —2.2 1 .2, =33 -1, -3

neighbors as candidates for a possible mixed-strategy equilibrium.'

Table 3 illustrates the entire range of payoffs, while Table 4 is a conden-
sation showing only the immediate-neighbor options: Ce {.4,.6] and
Pe{.4,.6}."” There is no pure-strategy equilibrium for this game. Using
equations (1) to find the equilibrium mix of the two neighboring strategies,
over the strategy sets {.2, .4, .6, .8, 1} the equilibrium mixtures are: for the
criminals, 6, = (0, .6, .4,0,0) and for the police 6, = (0, .5, .5,0,0).

Thus we have shown by construction that a mixed-strategy equilibrium
is possible given a discrete strategy space for the Police Game. That a
mixed-strategy outcome is not inevitable is illustrated in Table 5. Here the
available strategy options are, by assumption, .4 and 1.0 on each side."”
In Table 5, C* = P* = .4 is a pure-strategy equilibrium.

11. More extreme pure strategies might enter into a mixed-strategy equilibrium, even
conceivably in place of a ‘neighboring’ strategy, since the payoff functions might take on any
of a wide variety of forms. The payoff functions need not necessarily be monotonic or even
bitonic in the C and P variables, and the interaction can be formulated in many different ways.

12. Table 4 is an allowable condensation, since in Table 3 all but the .4 and .6 row and
column strategies can be ruled out by iterated strict dominance. Specifically: (1) the P = 1
and P = .2 columns can be deleted as they are dominated by P = .8 and P = .4 respectively;
(2) then the C = .2 row is dominated by C = .4, and C = .8 and C = 1 are both dominated
by C = .6; (3) and finally, the P = .8 column is then dominated by P = .6. This process
leaves only the .4 and .6 strategies on each side.

13. Whereas Table 4 was a condensation of the underlying Table 3 showing the strategies
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Table 6. Table 3 with Increased Criminal Gain Parameter

Police
2 4 6 .8 1
2 —-.384, —1.4 .368, —1.3 .352, —1.533 .336, —1.85 32, —2.2
z 4 736, —2.4 672, —1.8 .608, —1.867 544, —2.1 .48, —2.4
E 6 1.056, —3.4 912, =2.3 .768, —2.2 .624, —2.35 .48, —2.6
S 8 1.344, —4.4 1.088, —2.8 .832, —2.533 .576, —2.6 .32, -2.8
1 1.6, —5.4 1.2, 3.3 .8, —2.867 4, —2.85 0, -3

These results suggest that there is likely to be a pure-strategy equilibrium
when the available choices are asymmetrically placed - one of the strategy-
pairs being located close to and the others far away from the pure-strategy
equilibrium choices of the underlying continuum. Conversely, when the
available choices are more or less evenly distant from the equilibrium of
the continuous game, a mixed-strategy equilibrium is likely."

Finally, let us return to the claim that the PIP holds at least within the
window of conditions leading to mixed-strategy equilibria. Intuition sug-
gests that if the equilibrium strategy mixture is not to be affected, only
payoff changes within a limited range are allowable. More specifically,
our previous analysis suggests that for such insensitivity to hold, the payoff
parameter variations must be small enough so as not to cause a shift either
to a pure-strategy equilibrium or to a mixed equilibrium involving different
strategy elements.

Looking at Figure 3, the continuous-strategy intersection involving the
dashed RC, curve was generated by a change in the criminals’ gain para-
meter from a, = 1 to a, = 2. Is this change ‘sufficiently small’ for insen-
sitivity to hold in the discrete-strategy game described above, where the
options on each side ranged from .2 to 1 in steps of .2 each? That is, will
the criminals’ optimal strategy remain the mixture of C = .4 and C = .6
with probabilities .6 and .4 respectively? Notice that the intersection
involving the new RC, curve no longer lies between .4 and .6, which may
lead us to suspect that this parameter change is not ‘sufficiently small’ to
leave the criminals’ optimum mix unaffected. And in fact, Table 6 - like
Table 3 but calculated in terms of the criminal ‘gain parameter’ «. = 2

entering into the equilibrium mixture on each side, Table 5 is quite different. It represents
a quite different game where, by assumption, all but the two specified strategies on each side
have been disallowed.

14. This is only a tendency rather than a strict rule, since (as previously noted) distance as
measured in the strategy space need not correlate well with distance in terms of the payoffs.
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instead of a. = 1 - reveals that (C*, P*) = (.8, .6) is now a pure-strategy
equilibrium. That this strategy-pair is a pure-strategy solution is not surpris-
ing since it is very close to (.7937, .6300), which was the equilibrium of the
corresponding continuous-strategy game using the changed «, parameter.

Thus, we have verified Result 3 by example. In particular, we have shown
that, with a discrete strategy space, there may or may not be a mixed-strategy
equilibrium. If there is a mixed-strategy equilibrium, then the PIP will be
valid only for payoff changes that are ‘sufficiently small’ in the sense of
not affecting the strategies entering into the equilibrium mixture.

V. Conclusion

In discrete two-strategy simultaneous-move games with a mixed-strategy
equilibrium, a change in one player’s payoffs affects only the other player’s
equilibrium mix. We call this the PIP. It has been alleged that the PIP
vitiates the economic arguments for or against policy initiatives; although
policy-makers can alter the payoffs received from alternative strategies,
changes in payoffs allegedly do not modify the equilibrium strategy mix
of the affected parties. In particular, in the Police Game an increase in
penalties will assertedly not affect the criminals’ mix between committing
and not committing crimes.
In this paper we showed that:

1. Policy-making is ordinarily better modelled not in terms of a
simultaneous-move protocol but as a sequential-move game in which the
authorities have the first move. Using the standard subgame-perfect equilib-
rium concept for sequential-move games, the PIP will not generally apply.
Changes in incentives on either side will ordinarily affect the equilibrium
behavior of the policy-makers themselves and of the individuals or groups
they are trying to influence.

2. Even in the simultaneous-move game, if the strategy space is a con-
tinuum there will typically be a pure-strategy Nash equilibrium in which
changes in payoffs affect the behavior of both sides. Only in very special
cases will the PIP hold.

3. The case for the PIP is strongest when, in the simultaneous-move game,
the strategy space consists of discrete options. If choices are sufficiently
lumpy, a game may have a mixed-strategy equilibrium so that the PIP does
apply over a certain range. Specifically, it holds only for payoff changes
that are ‘sufficiently small’ in the sense of not shifting the strategy elements
entering into the equilibrium.

We conclude that the PIP is only rarely applicable in actual policy-making
situations. Incentives do, almost always, affect behavior in equilibrium.
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