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13 Auctions

This chapter is a big one. It really would take 3 75-minute
sessions– and don’t try to use all these slides even for 3 ses-
sions. Pick and choose which ones you want to cover.

I plan to cover, in one 75-minute session, parts of 13.1,
13.2, 13.5. I will pick just a few derivations to do, e.g., the
first-price private value auction optimal strategy.

I don’t think I’ll use overheads–I will write on the board.
I will use selected overheads as notes for myself.

Sell a soft drink using the 5 auction rules. Say I will col-
lect the money from the lowest winning bid.
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13.1 Values Private and Common, Continuous and
Discrete

Private-Value and Common-Value Auctions

Call the dollar value of the utility that bidder i receives
from an object its value to him, vi, and we will denote his
estimate of the value by v̂i.

Private-value auction: a bidder can learn nothing about
his value from knowing the values of the other bidders. (an-
tique chairs– not for resale)

Independent private-value auction: knowing his own
value tells him nothing about OTHER bidders’ values.

Affiliated private-value auction: he can use knowledge
of his own value to deduce something about other players’
values.

Pure common-value auction: the bidders have identical
values, but each bidder forms his own estimate on the basis
of his own private information.
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The Ten-Sixteen Auction

Players: One seller and two bidders.

Order of Play:
0. Nature chooses Bidder i’s value for the object to be ei-
ther vi = 10 or vi = 16, with equal probability. (The seller’s
value is zero.)

The Continuous-Value Auction

Players: One seller and two bidders.

Order of Play:
0. Nature chooses Bidder i’s value for the object, vi, using
the strictly positive, atomless density f (v) on the interval
[v, v].
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A Mechanism Interpretation

1. The seller chooses a mechanism [G(ṽi, ṽ−i)vi− t(ṽi, ṽ−i)]
that takes payments t and gives the object with probabil-
ity G to player i (including the seller) if he announces that
his value is ṽi and the other players announce ṽ−i. He also
chooses the procedure in which bidders select ṽi (sequen-
tially, simultaneously, etc.).

Payoffs: The seller’s payoff is

πs =
n

∑
i=1

t(ṽi, ṽ−i) (1)

Bidder i’s payoff is zero if he does not participate, and oth-
erwise is

πi(vi) = G(ṽi, ṽ−i)vi − t(ṽi, ṽ−i) (2)

The mechanism could allocate the good with 70% prob-
ability to the high bidder and with 30% probability to the
lowest bidder.

Each bidder could be made to pay the amount he bids,
even if he loses.

The payment t could include an entry fee.

There could be a “reserve price,” a minimum bid for which
the seller will surrender the good.
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13.2 Optimal Strategies under Different Rules in
Private-Value Auctions

Ascending (English, open-cry, open-exit)

Rules
Each bidder is free to revise his bid upwards. When no bid-
der wishes to revise his bid further, the highest bidder wins
the object and pays his bid.

Strategies
A bidder’s strategy is his series of bids as a function of
(1) his value,
(2) his prior estimate of other bidders’ values, and
(3) the past bids of all the bidders. His bid can therefore be
updated as his information set changes.

Payoffs
The winner’s payoff is his value minus his highest bid (t =
p for him and t = 0 for everyone else). The losers’ payoffs
are zero.
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Types of Ascending Auctions

(1) The bidders offer new prices using pre-specified incre-
ments such as thousands of dollars.

(2) The open-exit auction.

(3) The silent-exit auction.

(4) The Ebay auction.

(5) The Amazon auction.

The ascending auction can be seen as a mechanism in
which each bidder announces his value (which becomes his
bid), the object is awarded to whoever announces the high-
est value (that is, bids highest), and he pays the second-
highest announced value (the second-highest bid).

Discussion
A bidder’s dominant strategy in a private-value ascending
auction is to stay in the bidding until bidding higher would
require him to exceed his value and then to stop.
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First-Price (first-price sealed-bid)

Rules: Each bidder submits one bid, in ignorance of the
other bids. The highest bidder pays his bid and wins the
object.

Strategies: A bidder’s strategy is his bid as a function of his
value.

Payoffs: The winner’s payoff is his value minus his bid.
The losers’ payoffs are zero.
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Strategies in the First-Price Auction

In the first-price auction what the winning bidder wants
to do is to have submitted a sealed bid just enough higher
than the second-highest bid to win.

If all the bidders’ values are common knowledge and he
can predict the second- highest bid perfectly, this is a simple
problem.

If the values are private information, then he has to guess
at the second-highest bid, however, and take a gamble.

His tradeoff is between bidding high–thus winning more
often–and bidding low–thus benefiting more if the bid wins.

His optimal strategy depends on his degree of risk aver-
sion and beliefs about the other bidders, so the equilibrium
is less robust to mistakes in the assumptions of the model
than the equilibria of ascending and second-price auctions.
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The First-Price Auction with a Continuous Distribution
of Values

Suppose Nature independently assigns values to n risk-
neutral bidders using the continuous density f (v) > 0 (with
cumulative probability F(v)) on the support [0, v̄].

A bidder’s payoff as a function of his value v and his bid
function p(v) is, letting G(p(v)) denote the probability of
winning with a particular p(v):

π(v, p(v)) = G(p(v))[v − p(v)]. (3)

Thus,

p(v) = v − π(v, p(v))
G(p(v))

. (4)

Lemma 1: If a player’s equilibrium bid function is differen-
tiable, it is strictly increasing in his value: p′(v) > 0.

Lemma 1 implies that the bidder with the greatest v will
bid highest and win.
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Using the Envelope Theorem

The probability G(p(v)) that a bidder with price pi will
win is the probability that vi is the highest value of all n
bidders.

The probability that a bidder’s value v is the highest is
F(v)n−1, the probability that each of the other (n − 1) bid-
ders has a value less than v. Thus,

G(p(v)) = F(v)n−1. (5)

The Envelope Theorem says that if π(v, p(v)) is the value
of a function maximized by choice of p(v) then its total
derivative with respect to v equals its partial derivative, be-
cause ∂π

∂p = 0:
dπ(v,p(v))

dv = ∂π(v,p(v))
∂p

∂p
∂v + ∂π(v,p(v))

∂v = ∂π(v,p(v))
∂v . (6)

Then
dπ(v, p(v))

dv
= G(p(v)). (7)

Substituting from equation (5) gives us π’s derivative, if not
π, as a function of v:

dπ(v, p(v))
dv

= F(v)n−1. (8)

Integrate over all possible values from zero to v and include
the base value of π(0) (=0) as the constant of integration:

π(v, p(v)) = π(0) +
∫ v

0
F(x)n−1dx =

∫ v
0 F(x)n−1dx. (9)
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The Bid Function

We can now return to the bid function in equation (4) and
substitute for G(p(v)) and π(v, p(v)) from equations (5) (9):

p(v) = v −
∫ v

0 F(x)n−1dx
F(v)n−1 . (10)

Suppose F(v) = v/v̄, the uniform distribution. Then (10)
becomes

p(v) = v −
∫ v

0

(x
v̄

)n−1 dx(v
v̄

)n−1

= v −

∣∣∣∣v
x=0

(1
v̄

)n−1 (1
n

)
xn

(v
v̄

)n−1

= v −
(1

v̄

)n−1 (1
n

)
vn − 0(v

v̄

)n−1

= v − v
n =

(n−1
n

)
v.

(11)
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The First-Price Auction: A Mixed-Strategy Equilibrium
in the Ten-Sixteen Auction

When the value distribution does not have a continuous
support, the equilibrium in a first-price auction may not
even be in pure strategies.

Now let each of two bidders’ private value v be either 10
or 16 with equal probability and known only to himself.

In a first-price auction, a bidder’s optimal strategy is to
bid p(v = 10) = 10, and if v = 16 to use a mixed strategy,
mixing over the support [p, p̄], where it will turn out that
p = 10 and p̄ = 13, and the expected payoffs will be:

π(v = 10) = 0

π(v = 16) = 3

πs = 11.5.

(12)

These are the same payoffs as in the ascending auction, an
equivalence we will come back to in a later section.

12



The Equilibrium

p(v = 10) = 10. If either bidder used the bid p < 10, the
other player would deviate to (p + ε), and a bid above 10
exceeds the object’s value.

The bid p(v = 16) will be between 10 (so the bidder can
win if his rival’s value is 10) and 16 (which would always
win, but unprofitably).

The pure strategy of (p = 10)|(v = 16) will win with
probability of at least 0.50, yielding payoff 0.50(16 − 10) =
3. This rules out bids in (13, 16], because their payoff is less
than 3.

The upper bound p̄ must be exactly 13. If it were any
less, then the other player would respond by using the pure
strategy of ( p̄ + ε), which would win with probability one
and yield a payoff of greater than the payoff of 3 (= 0.5(16−
10)) from p = 10.

When a player mixes over a continuum, the modeller
must be careful to check for
(a) atoms (some particular point which has positive proba-
bility, not just positive density), and
(b) gaps (intervals within the mixing range with zero prob-
ability of bids). Are there any atoms or gaps within the in-
terval [10,13]?
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The Mixing Density

The mixing density m(p) is positive over the entire in-
terval [10, 13], with no atoms. Since if our player has value
v = 16 there is probability 0.5 of winning because the other
player has v = 10 and probability 0.5M(p) of winning be-
cause the other player has v = 16 too but bid less than p,
the payoff is

0.5(16− p) + 0.5M(p)(16− p) = 3. (13)

This implies that (16− p) + M(p)(16− p) = 6, so

M(p) =
6

16− p
− 1, (14)

which has the density

m(p) =
6

(16− p)2 (15)

on the support [10, 13], rising from m(10) = 1
6 to m(13) = 4

6.
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Second-Price Auctions (Second-price sealed-bid,
Vickrey)

Rules: Each bidder submits one bid, in ignorance of the
other bids. The bids are opened, and the highest bidder
pays the amount of the second-highest bid and wins the ob-
ject.

Strategies: A bidder’s strategy is his bid as a function of his
value.

Payoffs: The winning bidder’s payoff is his value minus the
second-highest bid. The losing bidders’ payoffs are zero.
The seller’s payoff is the second-highest-bid.
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Asymmetric Equilibria

Consider a variant of the Ten-Sixteen Auction, in which
each of two bidders’ values can be 10 or 16, but where the
realized values are common knowledge.

Bidding one’s value is a symmetric equilibrium, mean-
ing that the bid function p(v) is the same for both bidders:
{p(v = 10) = 10, p(v = 16) = 16}.

But consider the following equilibrium:

p1(v = 10) = 10 p1(v = 16) = 16

p2(v = 10) = 1 p2(v = 16) = 10
(16)
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Descending Auctions (Dutch)

Rules
The seller announces a bid, which he continuously lowers
until some bidder stops him and takes the object at that
price.

Strategies
A bidder’s strategy is when to stop the bidding as a function
of his value.

Payoffs
The winner’s payoff is his value minus his bid. The losers’
payoffs are zero.

The descending auction is strategically equivalent to the
first-price auction.
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All-Pay Auctions

Rules: Each bidder places a bid simultaneously. The bidder
with the highest bid wins, and each bidder pays the amount
he bid.

Strategies: A bidder’s strategy is his bid as a function of his
value.

Payoffs: The winner’s payoff is his value minus his bid.
The losers’ payoffs are the negative of their bids.

Discussion: The winning bid will be lower in the all-pay
auction than under the other rules, because bidders need a
bigger payoff when they do win to make up for their neg-
ative payoffs when they lose. At the same time, since even
the losing bidders pay something to the seller it is not ob-
vious that the seller does badly (and in fact, it turns out to
be just as good an auction rule as the others, in this simple
risk-neutral context).
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The Equal-Value All-Pay Auction

Suppose each of the n bidders has the same value, v.

Under the all-pay auction rule, this game is quite inter-
esting.

The equilibrium is in mixed strategies.

Either the maximum bid is less than v, in which case
someone could deviate to p = v and increase his payoff;

or one bidder bids v and the rest bid at most p′ < v, in
which case the high bidder will deviate to bid just above p′.
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A Symmetric Equilibrium

Suppose we have a symmetric equilibrium, so all bidders
use the same mixing cumulative distribution M(p). Let us
conjecture that π(p) = 0, which we will later verify. The
payoff function for each bidder is the probability of winning
times the value of the prize minus the bid, which is paid
with probability one, and if we equate that to zero we get

M(p)n−1v = p, (17)

so

M(p) = n−1

√
p
v

. (18)
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The Continuous-Value All-Pay Auction

Suppose each of the n bidders picks his value v from the
same density f (v). Conjecture that the equilibrium is sym-
metric, in pure strategies, and that the bid function, p(v),
is strictly increasing. The equilibrium payoff function for a
bidder with value v who pretends he has value z is

π(v, z) = F(z)n−1v − p(z), (19)

since if our bidder bids p(z), that is the highest bid only if
all (n − 1) other bidders have v < z, a probability of F(z)
for each of them.
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Finding the Equilibrium

The function π(v, z) is not necessarily concave in z, so
satisfaction of the first-order condition will not be a suffi-
cient condition for payoff maximization, but it is a neces-
sary condition since the optimal z is not 0 (unless v = 0)
or infinity and from (19) π(v, z) is differentiable in z in our
conjectured equilibrium. Thus, we need to find z such that

∂π(v, z)
∂z

= (n − 1)F(z)n−2 f (z)v − p′(z) = 0 (20)

In the equilibrium, our bidder does follow the strategy p(v),
so z = v and we can write

p′(v) = (n − 1)F(v)n−2 f (v)v (21)

Integrating up, we get

p(v) = p(0) +
∫ v

0
(n − 1)F(x)n−2 f (x)xdx (22)

This is deterministic, symmetric, and strictly increasing in
v, so we have verified our conjectures.
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The Outcome

Suppose values are uniformly distributed over [0,1], so
F(v) = v. Then equation (22) becomes

p(v) = p(0) +
∫ v

0
(n − 1)xn−2(1)xdx

= p(0) +
∣∣∣∣v

x=0
(n − 1)

xn

n

= 0 +
(

n − 1
n

)
vn,

(23)

where we can tell that p(0) = 0 because if p(0) > 0 a bidder
with v = 0 would have a negative expected payoff.

If there were n = 2 bidders, a bidder with value v would
bid v2/2, win with probability v, and have expected payoff
π = v(v) − v2/2 = v2/2. If there were n = 10 bidders, a
bidder with value v would bid (9/10)v10, win with proba-
bility v9, and have expected payoff π = v(v9)− (9/10)v10 =
v10/(10).
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The Dollar Auction

Consider an ascending auction to sell a dollar bill in which
the players offer higher and higher bids, and the highest
bidder wins– but both the first- and second-highest bidders
pay their bids.

What happens?
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THE REVENUE EQUIVALENCE THEOREM.

Let all players be risk-neutral with private values drawn
independently from the same atomless, strictly increasing
distribution F(v) on [v, v̄]. If under either Auction Rule A1
or Auction Rule A2 it is true that:

(a) The winner of the object is the player with the highest
value; and

(b) The lowest bidder type, v = v, has an expected pay-
ment of zero;

then the symmetric equilibria of the two auction rules
have the same expected payoffs for each type of bidder and
for the seller.
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Proving the Theorem

THE REVENUE EQUIVALENCE THEOREM. Let all play-
ers be risk-neutral with private values drawn independently
from the same atomless, strictly increasing distribution F(v)
on [v, v̄]. If under either Auction Rule A1 or Auction Rule
A2 it is true that:

(a) The winner of the object is the player with the highest
value; and

(b) The lowest bidder type, v = v, has an expected pay-
ment of zero;

then the symmetric equilibria of the two auction rules
have the same expected payoffs for each type of bidder and
for the seller.

Proof. Let us represent the auction as the truthful equilib-
rium of a direct mechanism in which each bidder sends a
message z of his type v and then pays an expected amount
p(z). (The Revelation Principle says that we can do this.) By
assumption (a), the probability that a player wins the object
given that he chooses message z equals F(z)n−1, the proba-
bility that all (n − 1) other players have values v < z. Let
us denote this winning probability by G(z), with density
g(z). Note that g(z) is well defined because we assumed
that F(v) is atomless and everywhere increasing.
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A Second Step in the Proof

The expected payoff of any player of type v is the same,
since we are restricting ourselves to symmetric equilibria. It
equals

π(z, v) = G(z)v − p(z). (24)
The first-order condition with respect to the player’s choice
of type message z (which we can use because neither z = 0
nor z = v̄ is the optimum if condition (a) is to be true) is

dπ(z; v)
dz

= g(z)v − dp(z)
dz

= 0, (25)

so
dp(z)

dz
= g(z)v. (26)

We are looking at a truthful equilibrium, so we can replace
z with v:

dp(v)
dv

= g(v)v. (27)
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Finishing the Proof

Next, we integrate (27) over all values from zero to v,
adding p(v) as the constant of integration:

p(v) = p(v) +
∫ v

v
g(x)xdx. (28)

We can use (28 to substitute for p(v) in the payoff equation
(24), which becomes, after replacing z with v and setting
p(v) = 0 because of assumption (b),

π(v, v) = G(v)v −
∫ v

v
g(x)xdx. (29)

Equation (29) says the expected payoff of a bidder of type
v depends only on the G(v) distribution, which in turn de-
pends only on the F(v) distribution, and not on the p(z)
function or other details of the particular auction rule. But
if the bidders’ payoffs do not depend on the auction rule,
neither does the seller’s. Q.E.D.
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A REVENUE EQUIVALENCE COROLLARY

Let all players be risk-neutral with private values drawn
from the same strictly increasing, atomless distribution F(v).
The symmetric equilibria of the ascending, first-price, second-
price, descending, and all-pay auctions all have the same
expected payoffs for each type of bidder and for the seller.
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Risk Aversion in Private-Value Auctions

When bidders are risk averse, the Revenue Equivalence
Theorem fails.

Consider Bidder 1 in The Ten-Sixteen Auction when he
knows his own value is v1 = 16 but does not know v2. In
the second-price auction, he has an equal chance of a payoff
of either 0 (if v2 = 16) or 6 (if v2 = 10), regardless of whether
the bidders are risk averse or not, because bidding one’s
value is a weakly dominant strategy.

Compare that with his payoff in the first-price auction, in
which the equilibrium is in mixed strategies. If the bidders
are risk neutral, then as we found earlier, if the bidder has
value 16 he wins using a bid in the mixing support [10,13]
and achieves a payoff in [3,6] with probability 0.75, and he
loses and earns payoff of zero with probability 0.25. The
(0,6) gamble of the second-price auction is riskier than the
(0, 3 to 6) gamble of the first-price auction. The (0,6) gamble
is simpler, but it has more dispersion.
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Risk Aversion in the First Price Auction

If the bidders are risk averse, then the optimal strate-
gies in the first-price auction change. It remains true that
the bidders mix on an interval [10, p̄]. We derived p̄ and
the optimal mixing distribution by equating expected pay-
offs, however, and a certain win at a price of 10 will now
be worth more to a bidder than a 50% chance of winning
at a price of 13. Let us denote the concave utility func-
tion of each bidder by U(v − p) and normalize by defining
U(0) ≡ 0. The expected payoff from p = 10, which wins
with probability 0.5, must equal the expected payoff from
the upper bound p̄ of the mixing support, so

0.5U(6) = U(16− p̄). (30)

Since 0.5U(6) < U(16 − 13) by concavity of U, it must be
that p̄ > 13.
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The Mixing Density

We found the mixing distribution function M(p) by equat-
ing π(p) to the payoff from bidding 10, which is 0.5U(6), so

π(p) = 0.5U(16− p)+ 0.5M(p)U(16− p) = 0.5U(6), (31)

which can be solved to yield

M(p) =
U(6)

U(16− p)
− 1, (32)

which has the density

m(p) =
U(6)

U

′
(16− p)U(16− p)2, (33)

compared with the risk-neutral density m(p) = 6
(16−p)2 from

equation (15). Thus, risk aversion of the bidders actually
spreads out their equilibrium bids (the support is broader
than [10,13]), but it remains true that the first-price auction
is less risky than the second-price auction.
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Risk Aversion in the Continuous-Value Auction

What happens in the Continuous-Value Auction? In the
second-price auction ,the optimal strategies are unchanged,
so seller revenue does not change if bidders are risk averse.

To solve for the equilibrium of the first-price auction, look
at a given bidder’s incentive to report his true type v as z in
an auction in which the payment is p(z) and the probability
of winning the object is G(z).

The bidder maximizes by choice of z

π(v, z) = G(z)U[v − p(z)]

= F(z)n−1U[v − p(z)],
(34)

where π(v, 0) = 0 because F(0) = 0.

At the optimum,
∂π(v,z)

∂z = (n − 1)F(z)n−2 f (z)U[v − p(z)]
+F(z)n−1U′[v − p(z)][−p′(z)] = 0,

(35)
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The Ultimate Effect of Risk Aversion

In equilibrium, z = v. Using that fact, for all v > v (since
F(v) = 0) we can solve equation (35) for p(z) to get

p(v) =
(

(n − 1) f (v)
F(v)

)(
U[v − p(v)]
U′[v − p(v)]

)
(36)

Now let’s look at the effect of risk aversion on p(v). If U is
linear, then

U[v − p(v)]
U′[v − p(v)]

= v − p(v), (37)

but if the bidder is risk averse, so U is strictly concave,

U[v − p(v)]
U′[v − p(v)]

> v − p(v). (38)

Thus, for a given v, the bid function in (36) makes the bid
higher if the bidder is risk averse than if he is not. The bid
for every value of v except v = v increases (p(v) = v, re-
gardless of risk aversion).

By increasing his bid from the level optimal for a risk-
neutral bidder, the risk- averse bidder insures himself. If he
wins, his surplus is slightly less because of the higher price,
but he is more likely to win and avoid a surplus of zero.
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Seller Revenue and Risk Aversion

As a result the seller’s revenue is greater in the first-price
than in the second-price auction if bidders are risk averse.

But since under risk neutrality the first-price and second-
price auctions yield the same revenue, under risk aversion
the first-price auction must yield greater revenue, both in
expectation and conditional on the highest v present in the
auction.

The seller, whether risk neutral or risk averse, will prefer
the first-price auction when bidders are risk averse.
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Uncertainty over One’s Own Value

If the seller can reduce bidder uncertainty over the value of the
object being auctioned, should he do so?

Suppose there are n bidders, each with a private value,
in an ascending auction. Each measures his private value v
with an independent error ε > 0. This error is with equal
probability −x, +x or 0.

The bidders have diffuse priors, so they take all values of
v to be equally likely, ex ante.

Let us denote a bidder’s measured value by v̂ = v + ε,
which is an unbiased estimate of v.

In the ascending auctions we have been studying so far,
where ε = 0, the optimal bid ceiling was v.

Now, when ε > 0, what bid ceiling should be used by a
bidder with utility function U(v − p)?
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Optimal Strategies for Uncertain Bidders

If the bidder wins the auction and pays p for the object,
his expected utility at that point is

π(p) =
U([v̂ − x]− p)

3
+

U(v̂ − p)
3

+
U([v̂ + x]− p)

3
(39)

If he is risk neutral, this yields him a payoff of zero if p =
v̂, and winning at any lower price would yield a positive
payoff. Under risk neutrality uncertainty over one’s own
value does not affect the optimal strategy.

If the bidder is risk averse, however, then the utility func-
tion U is concave and

U([v̂ − x]− p)
3

+
U([v̂ + x]− p)

3
<

(
2
3

)
U(v̂ − p), (40)

so his expected payoff in equation (39) is less than U(v̂− p),
and if p = v̂ his payoff is less than U(0).
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13.4 Reserve Prices and the Marginal Revenue Approach

A reserve price p∗ is a bid put in by the seller, secretly or
openly, before the auction begins, which commits him not
to sell the object if nobody bids more than p∗.

The seller will often find that a reserve price can increase
his payoff. If he does, it turns out that he will choose a re-
serve price strictly greater than his own value: p∗ > vs.

To see this, we will use the marginal revenue approach
to auctions [ Bulow & Roberts (1989)]

This approach compares the seller in an auction to an or-
dinary monopolist who sells using a posted price.
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An Auction with One Bidder and a Reserve Price

The seller will do badly in any of the auction rules we have
discussed so far.

What should the seller’s offer p∗ be?

Let the bidder have value distribution F(v) on [v, v̄] which
is differentiable and strictly increasing, so the density f (v)
is always positive. Let the seller value the object at vs ≥ v.
The seller’s payoff is

π(p∗) = Pr(p∗ < v)(p∗− vs) + Pr(p∗ > v)(0)

= [1− F(p∗)](p∗− vs).
(41)

This has first-order-condition
dπ(p∗)

dp∗
= [1− F(p∗)]− f (p∗)[p∗− vs] = 0. (42)

On solving (42) for for p∗ we get

p∗ = vs +
(

1− F(p∗)
f (p∗)

)
. (43)

The reserve price is strictly greater than the seller’s value for
the object (p∗ > vs) unless the solution is such that F(p∗) =
1 because the optimal reserve price is the greatest possible
bidder value, in which case the object has probability zero
of being sold.
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2. Multiple Bidders.

Now let there be n bidders, all with values distributed in-
dependently by F(v). Denote the bidders with the highest
and second-highest values as Bidders 1 and 2.

The seller’s payoff in a second-price auction is

π(p∗) = Pr(p∗ > v1)(0) + Pr(v2 < p∗ < v1)(p∗− vs)
+Pr(p∗ < Ev2 < v1)(v2 − vs)

=
∫ p∗

v1=v
f (v1)(0)dv1 +

∫ v̄

v1=p∗

( ∫ p∗

v2=v
(p∗− vs) f (v2)dv2

+
∫ v1

v2=p∗
(v2 − vs) f (v2)dv2

)
f (v1)dv1

(44)
This expression integrates over two random variables. First,
it matters whether v1 is greater than or less than p∗, the
outer integrals. Second, it matters whether v2 is less than
p∗ or not, the inner integrals.

It turns out that

p∗ = vs +
1− F(p∗)

f (p∗)
, (45)

just what we found in equation (43) for the one-bidder case.
Remarkably, the optimal reserve price is unchanged!
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3. A Continuum of Bidders: The Marginal Revenue
Interpretation

Now think of a firm with a constant marginal cost of c
facing a continuum of bidders along the same distribution
F(v) that we have been using. The quantity of bidders with
values above p will be (1− F(p)), so the demand equation
is

q(p) = 1− F(p), Revenue ≡ pq = p(1− F(p)) (46)

The marginal revenue is then (keeping in mind that dq
dp =

− f (p))

Marginal Revenue ≡ dR
dq = p +

(
dp
dq

)
q

= p +
(

1
dq
dp

)
q

= p − 1−F(p)
f (p)

(47)

Profit-maximizing monopoly price is the one at which the
marginal revenue equals c.
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Figure 3a: Auctions and Marginal Revenue: Reserve
Price Needed or Not Needed
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Monopoly and Auctions

If output is reduced below the competitive level, the out-
come is inefficient, as in conventional monopoly. This hap-
pens if no sale takes place of the one unit even though v >
vs for some bidder.

Unlike a conventional monopoly, there is a possibility of
inefficient “overproduction” in an auction.

That happens if the sale takes place even though no bid-
der values the good as much as the seller: v < vs for the
winning bidder.

A positive reserve price, therefore, can help efficiency
rather than hurt it.

All the five auction forms — first-price, second-price, de-
scending, ascending, and all-pay— can be efficient in a private-
value setting, but only if the reserve price is set not at the
profit-maximizing level but at p∗ = vs.
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Hindering Bidder Collusion

Robinson (1985) has pointed out that whether the auction
is private-value or common-value, the first-price auction is
superior to the second-price or ascending auctions for de-
terring collusion among bidders.

Consider a bidder’s cartel in which bidder Smith has a
private value of 20, the other bidders’ values are each 18,
and they agree that everybody will bid 5 except Smith, who
will bid 6.

In an ascending auction this is self-enforcing, because if
somebody cheats and bids 7, Smith is willing to go all the
way up to 20 and the cheater will end up with no gain from
his deviation.

In a first-price auction the bidders have a strong tempta-
tion to cheat. The bid p′ that the colluders would choose for
Smith would be lower than p′ = 20, since he would have to
pay his bid, but if p′ is anything less than the other bidders’
value of 18 any one of them could gain by deviating to bid
more than p′ and win.
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Common Value Auctions and the Winner’s Curse

In a pure common-value auction, all players have the
same value, but they estimate it with different errors.

What happens if everybody bids his best estimate of the
value?

Thus: shade your bid till you expect zero profit even if
you overestimated the most.

If Smith is more risk averse than Brown, then Smith should
be more cautious for two reasons.

The gamble is worth less to Smith– the reason analyzed
above in the private-value setting.

Also, when Smith wins against a rival like Brown who
regularly bids more, Smith probably overestimated the value.

If there is a private value component, and it is bigger for
Brown than for Smith, Smith should also be extra-cautious.
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Table 1 Bids by Serious Competitors in Oil Auctions

Offshore Santa Barbara Offshore Alaska
Louisiana Channel Texas North Slope
1967 1968 1968 1969
Tract SS 207 Tract 375 Tract 506 Tract 253

32.5 43.5 43.5 10.5
17.7 32.1 15.5 5.2
11.1 18.1 11.6 2.1
7.1 10.2 8.5 1.4
5.6 6.3 8.1 0.5
4.1 5.6 0.4
3.3 4.7

2.8
2.6
0.7
0.7
0.4
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Strategies in Common-Value Auctions

Milgrom & Weber (1982) found that when there is a common-
value element in an auction and signals are “affiliated” then
revenue equivalence fails.

The first-price and descending auctions are still identical,
but they raise less revenue than the ascending or second-
price auctions.

If there are more than two bidders, the ascending auction
raises more revenue than the second-price auction.

If signals are affiliated then even in a private value auc-
tion, in which each bidder knows his own value with cer-
tainty, the first-price and descending auctions will do worse.
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Signals from a Uniform Distribution

Suppose n signals are independently drawn from the uni-
form distribution on [s, s].

Denote the jth highest signal by s(j).

The expectation of the kth highest value is

Es(k) = s +
(

n + 1− k
n + 1

)
(s − s) (48)

Let n risk-neutral bidders, i = 1, 2, ...n each receive a sig-
nal si independently drawn from the uniform distribution
on [v − m, v + m], where v is the true value of the object to
each of them.

Assume that they have “diffuse priors” on v, which means
they think any value from v = −∞ to v = ∞ is equally
likely and we do not need to make use of Bayes’s rule.
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Figure 4: Extracting Information From Uniformly
Distributed Signals

The best estimate of the value given the set of n signals is

Ev|(s1, s2, ..., sn) =
s(n) + s(1)

2
. (49)

The estimate depends only on two out of the n signals— a
remarkable property of the uniform distribution.

If there were five signals {6, 7, 7, 16, 24}, the expected value
of the object would be 15 (=[6+24]/2), well above the mean
of 12 and the median of 7, because only the extremes of 6
and 24 are useful information.
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The Uniform-Signal Common-Value Auction

Order of Play: 0. Nature chooses the common value for the
object v using the uniform density on [−∞, ∞] (the limit of
[−x, x] as x goes to infinity), and sends signal si to Bidder i
using the uniform distribution on [v − m, v + m].
1. The seller chooses a mechanism that allocated the object
and payments based on each player’s choice of p. He also
chooses the procedure in which bidders select p (sequen-
tially, simultaneously, etc.).
2. Each bidder simultaneously chooses to participate in the
auction or to stay out.
3. The bidders and the seller choose value of p according to
the mechanism procedure.
4. The object is allocated and transfers are paid according to
the mechanism.
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The Ascending Auction (open-exit)

Equilibrium: If no bidder has quit yet, Bidder i should drop
out when the price rises to si. Otherwise, he should drop out
when the price rises to pi =

p(n)+si
2 , where p(n) is the price at

which the first dropout occurred.

Explanation: If no other bidder has quit yet, Bidder i is safe
in agreeing to pay his signal, si. Either (a) he has the lowest
signal, or (b) everybody else has the same signal value si
too, and they will all drop out at the same time. In case
(a), having the lowest signal, he will lose anyway. In case
(b), the best estimate of the value is si, and that is where he
should drop out.

Once one bidder has dropped out at p(n), the other bid-
ders can deduce that he had the lowest signal, so they know
that signal s(n) must equal p(n). Suppose Bidder i has signal
si > s(n). Either (a) someone else has a higher signal and
Bidder i will lose the auction anyway and dropping out too
early does not matter, or (b) everybody else who has not yet
dropped out has signal si too, and they will all drop out at
the same time, or (c) he would be the last to drop out, so
he will win. In cases (b) and (c), his estimate of the value is
p(i) =

p(n)+si
2 , since p(n) and si are the extreme signal values

and the signals are uniformly distributed, and that is where
he should drop out.
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Seller Revenue

The price paid by the winner will be the price at which
the second-highest bidder drops out, which is

s(n)+s(2)
2 .

Ep(2) = [v+(1−n
n+1)m]+[v+(n−3

n+1)m]
2

= v −
(1

2

) ( 1
n+1

)
2m.

(50)

If m = 50 and n = 4, then

Ep(2) = v −
(

1
10

)
(100) = v − 10. (51)

Expected seller revenue increases in n, the number of bid-
ders (and thus of independent signals) and falls in the un-
certainty m (the inaccuracy of the signals).

That this is an open-exit auction is crucial. Other bidders
need to learn the lowest signal.
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Common Values: The Second-Price Auction

Equilibrium: Bid pi = si −
(n−2

n

)
m.

Explanation: Bidder i should think of himself as being tied
for winner with one other bidder, and so having to pay ex-
actly his bid. Thus, he imagines himself as the highest of
(n − 1) bidders drawn from [v − m, v + m] and tied with
one other. Then,

pi = si −
(

n − 2
n

)
(m)

On average, the second-highest bidder actually has the
signal Es(2) = v +

(n−3
n+1

)
m, so

Ep(2) = [v +
(n−3

n+1

)
m]−

(n−2
n

)
(m)

= v −
(n−1

n

) ( 1
n+1

)
2m.

(52)

If m = 50 and n = 4, then

Ep(2) = v −
(

3
4

)(
1
5

)
(100) = v − 15. (53)

If there are at least three bidders, expected revenue is
lower in the second- price auction. (We found revenue of
(v − 10) with n = 4 in the ascending auction.)

If n = 2, however, the expected price is the same. v(n) =
v(2), so the winning price is based on the same information
in both auctions.
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Common Values: The First-Price Auction

Equilibrium: Bid (si − m).

Explanation: Bidder i bids (si − z) for some amount z that
does not depend on his signal, because given the assump-
tion of diffuse priors, he does not know whether his signal
is a high one or a low one.

Define Ti to be how far the signal si is above its minimum
possible value, (v − m), so

Ti ≡ si − (v − m) (54)

and si ≡ v − m + Ti. Bidder i has the highest signal and
wins the auction if Ti is big enough, which has probability(

Ti
2m

)n−1
, which we will define as G(Ti), because it is the

probability that the (n − 1) other signals are all less than
si = v − m + Ti. He earns v minus his bid of (si − z) if he
wins, which equals (z + m − Ti).
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The Epsilon Argument

If Bidder i deviated and bid a small amount ε higher,
he would win with a higher probability, G(Ti + ε), but he
would lose ε whenever he would have won with the lower
bid. Using a Taylor expansion, G(Ti + ε) ≈ G(Ti) + G′(Ti)ε,
so

G(Ti + ε)− G(Ti) ≈ (n − 1)Tn−2
i

(
1

2m

)n−1

ε. (55)

The benefit from bidding higher is the higher probability,
[G(Ti + ε)− G(Ti)] times the winning surplus (z + m− Ti).
The loss from bidding higher is that the bidder would pay

an additional ε in the
(

Ti
2m

)n−1
cases in which he would have

won anyway.
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A Bidder’s Optimal Strategy

In equilibrium, he is indifferent about this infinitesimal
deviation, taking the expectation across all possible values
of his “signal height” Ti, so∫ 2m

Ti=0

[(
(n − 1)Tn−2

i

(
1

2m

)n−1

ε

)
(z + m − Ti)− ε

(
Ti

2m

)n−1
]

dTi = 0.

(56)
This implies that

ε
( 1

2m

)n−1 ∫ 2m
Ti=0

[(
(n − 1)Tn−2

i

)
(z + m)

−(n − 1)Tn−1
i − Tn−1

i

]
dTi = 0.

(57)

which in turn implies that

ε

(
1

2m

)n−1∣∣∣∣2m

Ti=0

(
Tn−1

i (z + m)

−Tn
i ) = 0,

(58)

so (2m)n−1(z + m)− (2m)n − 0 + 0 = 0 and z = m. Bidder
i’s optimal strategy in the symmetric equilibrium is to bid
pi = si − m.
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Winning Bid and Expected Revenue

The winning bid is set by the bidder with the highest sig-
nal, and that highest signal’s expected value is

Es(1) = s +
(n+1−1

n+1

)
(s − s)

= v − m +
( n

n+1

)
(2m)

(59)

The expected revenue is therefore

Ep(1) = v − (1)
(

1
n + 1

)
2m. (60)

If m = 50 and n = 4, then

Ep(1) = v −
(

1
5

)
(100) = v − 20. (61)

Here, the revenue is even lower than in the second-price
auction, where it was (v − 15) (and the revenue is lower
even if n = 2).

Revenue ranking: Ascending highest, then second-price,
then first-price.
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The Wallet Game

Order of Play
(0) Nature chooses the amounts s1 and s2 of the money in
each player’s wallet using density functions f1(s1) and f2(s2).
Each player observes only his own wallet’s contents.
(1) Each player chooses a bid ceiling p1 or p2. An auctioneer
auctions off the two wallets by gradually raising the price
until either p1 or p2 is reached.

Payoffs:
The player who bids less has a payoff of zero. The winning
player pays the bid ceiling of the loser and hence has a pay-
off of

s1 + s2 − Min(p1, p2) (62)

A symmmetric equilibrium is for Bidder i to choose bid
ceiling pi = 2si.

This is an equilibrium because if he wins at exactly that
price, Bidder j’s signal must be sj = si and the value of the
wallets is 2si.

If Bidder i bids any lower, he might pass up a chance to
buy the wallet for less than its value.

If he bids any higher, he would only win if p > 2sj too,
which implies that p > si + sj.
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Affiliation

Definition. The signals x1 and x2 are affiliated if for all pos-
sible realizations Small < Big of x1 and Low < High of x2,
the joint probability f (x1, x2) is such that z1 and z2,

f (x1 = Small, x2 = Low) f (x1 = Big, x2 = High)

≥ f (x1 = Small, x2 = High) f (x1 = Big, x2 = Low).
(63)

Thus, affiliation says that the probability the values of x1
and x2 move in the same direction is greater than the prob-
ability they move oppositely.

The implication of two signals being affiliated is that the
expected value of the winning bid conditional on the signals
is increasing in all the signals.

When one signal rises, that has the positive direct effect
of increasing the bid of the player who sees it, and non-
negative indirect effects once the other players see his bid
increase and deduce that he had a high signal.
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The Monotone Likelihood-Ratio Property

The Monotone Likelihood-Ratio Property is the same thing
expressed in terms of the conditional densities, the posteri-
ors.

Definition. The conditional probability g(x1|x2) satisfies the
Monotone Likelihood Ratio Property if the likelihood ratio
is weakly decreasing in x1, that is, for all possible realiza-
tions Small < Big of x1 and Low < High of x2,

g(Big|Low)
g(Big|High)

≤ g(Small|Low)
g(Small|High)

. (64)

The Monotone Likelihood Ratio Property says that as x2
goes from Low to High, the Big value of x1 becomes rela-
tively more likely.

It can be shown that this implies that for any value z, the
conditional cumulative distribution of x1 up to x1 = z given
x2 weakly increases with x2, which is to say that the distri-
bution G(x1|x2) conditional on a larger value of x2 stochas-
tically dominates the distribution conditional on a smaller
value of x2.
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The Linkage Principle:

The linkage principle: when the amount of affiliated
information available to bidders increases, the equilibrium
sales price becomes greater.

The seller should have a policy of disclosing any affili-
ated information he possesses.

Auction rules which reveal affiliated information in the
course of the auction (e.g., open-exit auctions) or use it in
determining the winner’s payment (e.g., the second-price
auction) will result in higher prices.
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