Graph Plotting and Data Analysis using Mathematica

The purpose of these notes is to show Hdathematicacan be used to analyze labo-
ratory data. The notes are not complete, since there are many commands that are not
discussed here. For further information you should consult the online Help menu or
the MathematicaBook.

It is good practice to reset everything before you begin a Mathematica session:

In[1]:= Clear ["Global' %"]

Data Lists
Mathematicahas some powerful functions for manipulating lists of data. Consider a
list of numbers (which we’ll callistl):

Inf2l= listl = {26, 13, 4, 0.3, 3, -2, 0.08, 19. 3}
outf2]= (26, 13, 4, 0.3, 3, -2, 0. 08, 19. 3}

You can add, subtract, multiply or divide by a constant very easily. For example, we
can create a nelist2 by adding 3 to each term:

Inf3l:= list2 =listl +3
outf3]= (29, 16, 7, 3.3, 6, 1, 3. 08, 22. 3}

If you want to multiply each term itistl by 1/4ne,, first definee, and then multiply
each element ifistl by it.

Inf4l= e, =8.8510" -12;

In[5]:= list3 = listl
4re,

outf5]= {2.33787 x10%!, 1. 16893 x 10,
3.59672 x10%0, 2. 69754 x 10°, 2. 69754 x 10,
~1.79836 x 1010, 7.19344 % 108, 1. 73542 x 10}

Other operations can be applied similarly. For example, you can obtain the natural
logarithm of each term with thieog function. Note that the name of the function starts
with a capital letter and that the argument appeafsdunare brackets}

In[6].= Log [list2]
Out[6]= {Log[29], Log [16], Log [7], 1.19392, Log [6], O, 1.12493, 3. 10459 }

Mathematicagives exact values. The exact value of the natural logarithm of 29 is
Log[29]. An approximate numerical value is obtained udihop one of the following
two forms:

In[7]:= N[Log [29]]
Out[7]= 3.3673

or

In[8]:= Log [291/ N
Oout[8]= 3.3673

You can display a result to any number of decimal places. Here's

In[9]:= 7T (% exact =)
outf9]=
In[10]:= N[x] (% approximate =)

Outf10]= 3. 14159

In[11]:= N[z, 100] (* 100 decimal places *)

Out[11]= 3. 1415926535897932384626433832795028841971
69399375105820974944592307816406286208998
628034825342117068

Other operations on lists

To add together all the elementslist1.:

Inf12l:= Plus @@ listl
out12]= 63.68

To multiply together all the elements list1:

In[13]:= Times @@ listl
Out[13]= -3757.48

Editing Lists of Data

You can select points from a list of data using the comm#&adg, Take andPart .
Drop the first 2 points frontist1:

In[14]:= Drop [list1 , 2]
Out[14]= {4, 0.3, 3, -2, 0.08, 19. 3}

Drop the last 2 points:

In[15]:= Drop [listl , -2]
Out[15]= {26, 13, 4, 0.3, 3, -2}

Drop the second through fifth points:

In[16]:= Drop [listl , {2, 5}1]
Out[i16]= {26, -2, 0. 08, 19. 3}

Drop alternate points between the first and eighth points:

In[17]:= Drop [listl , {1, 8, 2}1
Out[17]= {13, 0.3, -2, 19. 3}

Take is used similarly. For example, to keep the first two points:

In[18]:= Take [listl , 2]
Out[18]= {26, 13}

Part also lets you extract one or more data points from the list. It is used in almost the
same way aSake andDrop. These three statements do the same thing:

In[19]:= Drop [list1 , -31;
Take [listl , 5];
Part [listl , {1, 2, 3, 4, 5}1;

Note also that
In[20]:= Part [listl , 31;
does the same as

Inf21l:= listl [[311:

Reading data from a laboratory experiment

Most of the data that you obtain in the laboratory will consists of pairs of (x,y) values,
for example:

Inf22]:= data = {{0, 6.62}, {1, 6.73}, {2, 6.86}, {3, 6.98}, {4, 7.03}};

One problem with this method of data entry is that is becomes laborious to type many
curly brackets and commas, as well as increasing the possibility of making mistakes.
An alternate method is to first create a data file using a text editor. A file which consists
of two columns of x and y values might look like this, with a space between each
column of numbers:

5 8.1

1 9.2

15 10.5
2 131
2.5 15.4
3 18

3.5 20.4
4 22.9
4.5 24.5
5 26.3

Save the file under a meaningful name, such as “labdata.dat”. The “.dat” file extension
tells you that this is a data file, as opposed any other kind of file, like text (.txt), a
picture (.jpg, .gif, .bmp), or a program (.exe).

There are several methods for tellipthematicahow to read a set of data. The
simplest of these is probably th@port command to read a data file. If the file is not
already in your default working directory, you will need to \®etDirectory to make

sure thaMathematicaeads the file from the correct directory. For example (the exact
syntax will depend on your operating system - Windows, Macintosh or Linux/Unix):

In[23]:= SetDirectory ["c : \win98 \desktop" 1;
Let's read in the data file “labdata.dat”.

In[24]:= labdata = Import ["labdata . dat"]

out[24]= {{0.5, 8.1}, {1, 9.2}, {1.5, 10.5}, {2, 13.1},
{2.5, 15. 4}, {3, 183}, {3.5, 20. 4},
{4, 22.9}, {4.5, 24.5}, {5, 26.3}}

You can also us®eadList. This syntax tellsMathematicato read two columns of
data. Use whichever form you like.

In[25]:= data = ReadList ["labdata . dat" , {Number, Number}]
out[25]= {{0.5, 8.1}, {1, 9.2}, {1.5, 10.5}, {2, 13.1},
(2.5, 15. 4}, {3, 18}, {3.5, 20. 4},
{4, 22.9}, {4.5, 24.5}, {5, 26.3}}

See for yourself what happens when you use onlyuamber or omit theNumbers
completely

Simple Graphs, Fit and Regression

Plot the imported data:

In[26]:= rawdata = ListPlot [labdata]

25¢
22.5¢
20¢
17.5¢
15¢
12.5¢
10}

Out[26]= -Graphics-

ListPlot is probably the most convenient method for displaying raw data. You can add
extra parameters if you like. Use whichever is most appropriate for your situation. For
example:

In[27]:= ListPlot [labdata , PlotStyle - PointSize [0.02]]

25¢
22.5¢
20¢
17.5¢
15¢
12.5¢
10}

In[28]:= ListPlot

25¢
22.5¢
20¢
17.5¢
15¢
12.5¢
10¢

[labdata

, PlotJoined

- True]

In[29]:= ListPlot

25¢
22.5¢
20¢
17.5¢
15¢
12.5¢
10}

[labdata

2

, PlotJoined

3

- True ,

4

PlotStyle

5

- Dashing [{0.02}]1]

Fit these points to a straight line:

In[30]:= result =Fit [labdata , {1, X}, X]
Out[30]= 4.92667 +4.33212x

Obtain the line of best fit without plotting it (that's whBisplayFunction does):

In[31]:= bestline = Plot [result , {x, 0, 5}, DisplayFunction - Identity]

Plot the data and line of best fit on the same axes. Add a title and axis labels:

In[32]:= Show[rawdata , bestline , AxesLabel - {"xvalues" , "yvalues" 1},
PlotLabel - "Mathematica Graph" 1]

y val uesvat hematica G aph
25

20
15
10

X val ues

1 2 3 4 5

A Shortcut

The above examples have shown how to draw a graph of your laboratory data using
the sequence of commandsstPlot, Fit andShow. You can combine commands to
produce a plot from a single line of input:

In[33]:= Plot [Fit [labdata , {1, x}, x1, {X, O, 5}, Epilog - {PointSize [0.02],
Map[Point , labdata 1}]

For a more detailed statistical analysis, including the errors in the slope and intercept,
use theRegresscommand. You will need to load thénearRegressionpackage first.

In[34]:= << Statistics'LinearRegression’
In[35]:= Regress [labdata , {1, x}, X]
Estimate SE TStat PValue

Oout[35]= {ParameterTabIe -1 4.92667 0.407664 12.0851 2.03141 x10°6 | RSquared - 0. 992694 ,
X 4.33212 0.131402 32.9685 7.81561 x10°1°

AdjustedRSquared - 0.99178,
EstimatedVariance - 0.356121,

DF SumOfSq MeanSq FRatio PValue
Model 1 387 .075 387.075 1086.92 7.81561 x1071°
Error 8 2 .84897 0.356121
Total 9 389 .924

ANOVATable -»

You don’t need to display all these numbers if you don’t want to. To display the pa-
rameters and their errors only, use

In[36]:= Regress [labdata , {1, x}, X, RegressionReport - ParameterClTable]

Estimate SE Cl
Out[36]= {ParameterCITabIe -1 4.92667 0.407664 {3.98659, 5. 86674 }
X 4.33212 0.131402 {4.02911, 4.63513)

You can fit data to any polynomial by including as many terms as you need inside the
curly bracket. Thus to fit data to a quadratic, type

In[37]:= Fit [labdata , {1, x, x"2 }, x]
Out[37]= 5.45167 +3.80712x + 0. 0954545 x 2

The use of Fit and Regress is not limited to polynomials. You can fit data to any linear
combination of the parameters that you specify, such as

In[38]:= Fit [labdata , {1, Sin [x], Cos[x1}, x]
Out[38]= 16.9071 - 2. 70799 Cos [x] - 7. 28491 Sin [x]

Removing erroneous data points
Before usingrit or Regressyou need to be sure that the data is correct. Look at the
data below:

Inf39:= listr = {{0.5, 8.1}, {1, 9.2}, (1.5, 10.5}, {2, 23.1}, {2.5, 15. 4}, {3, 18},
(3.5, 20. 4}, {4, 22.9}, {4.5, 24.5}, {5, 26.3}};

As usual, you can get a rough idea of what the graph looks like ws&tBlot.To make
it easier to see, we'll increase the size of the points uBmigtSize

In[40]:= firstplot = ListPlot [listr , PlotStyle - PointSize [0.02]]

251 .
22.5¢ ° o

17.5¢ i
15} *
12.5¢

If you attempt to fit this data to a straight line, you will get a meaningless result because
the fourth data point lies a long way from the line of best fit. You can remove this point
from the fit usingDrop:

In[41]:= dropdata = Drop [listr , {4}]

Out[41]= {{0.5, 8.1}, {1, 9.2}, {1.5, 10.5},
{2.5, 15. 4}, {3, 18}, {3.5, 20. 4},
{4, 22.9}, {4.5, 24.5)}, {5, 26.3}}

Now you can fit the data to a straight line:

In[42]:= corrfit = Fit [dropdata , {1, x}, X]
Out[42]= 5.03917 + 4. 31167 x

Plot the data points (including the wrong one) and the corrected line of best fit:
In[43]:= corrplot = Plot [corrfit , {x, 0, 5}, DisplayFunction - Identity]

Inf44]:= g = Show(firstplot , corrplot 1]

25¢
. .
20+
15
10+ ®
D
1 2 3 4 5

Obviously, if this was experimental data, you should go back and check the suspicious
point before continuing.

Consider this data:

Inf45]:= twoslpes = {{0.5, 1.3}, {1, 2. 14}, {1.5, 2. 65},
(2, 3.5}, {2.5, 4}, {3, 4.7}, (3.5, 6.35},
(4, 8}, {4.5, 9.25}, {5, 11.01}};

Now plot it:
In[46]:= rawdat = ListPlot [twoslpes]
10+
8 L
6 L
4 L
2 3 4 5

This data does not follow a single straight line because the slope changes at larger
values of x. We'll use Take and Drop to draw the lines of best fit for low and high x.
First obtain the line of best fit for the low range data:

In[47]:= lofit = Fit [Take [twoslpes , 5], {1, x}, X]
Out[47]= 0.69 +1.352x

Now generate the plot of the line of best fit (but don't display it yet):

In[48]:= loline =Plot [lofit , {x, 0, 5}, DisplayFunction - Identity]

Similarly, for the high range data. (You can also combine commands):

In[49]:= hiline = Plot [Fit [Drop [twoslpes , 51, {1, x}, X1,
{X, 2, 5}, DisplayFunction - Identity]

In[50]:= Show[rawdat , loline , hiline]

Example: Object in Free-Fall

Consider an object falling freely under gravity, where we measure the distance fallen
at one-second intervals:

Inf51):= d={{1, 5.3}, {2, 20.}, (3, 42. }, (4, 80.},
(5, 110. }, {6, 170.}, {7, 246.}, {8, 310.},
(9, 400. }, {10, 475. }};

Plot it:

In[52]:= falldata = ListPlot [d, PlotStyle - PointSize [0.02]1]

10

o
400 +)
300} b
o
200t
o

100 | d

o

o
Y hd ‘ ‘ ‘ ‘
4 6 8 10

UseFit to obtain the coefficient of? only. It should be numerically equal to g/2 (i.e.,
4.9 m/s"2)

In[53]:= Fit [d, {X2 }, x]
outf53]= 4.83192x 2

To obtain the error in the acceleration we Bsgress.Note how Regress includes the
constant term by default.

In[54]:= Regress [d, {xX2 }, x]

Estimate SE TStat PValue
Out[54]= {ParameterTabIe -1 -0.551648 3.32996 -0.165662 O0.872533 , RSquared - 0. 998508,
x? 4.8403 0.06616 73.1606 1.35714 x10°1?

AdjustedRSquared - 0. 998321,

DF SumOfSq MeanSq FRatio PValue
Model 1 246246 . 246246. 5352.47 1.35725 x
Error 8 368 .048 46.006
Total 9 246614

EstimatedVariance - 46. 006, ANOVATable -

We can also use the fact that data which follow a simple power law will appear as a
straight line when the logarithm of each term is plotted. The slope of the line gives the
expected power law.

In[55]:= ListPlot [Log[d], AxesLabel - > {"logtime" , "logdistance" }1

11

| og distance

6

0.5 1 1.5 2 log time

Fit Log[d] to a straight line:

In[56]:= logfit = Fit [Log [d], {1, x}, X]
Out[56]= 1.59544 + 1.9864 x

or better still,

In[57]:= Regress [Log [d], {1, x}, X]
Estimate SE TStat PValue
Oout[57]= {ParameterTabIe -1 1.59544 0.0331279 48 .1602 3.82236 x10 ' , RSquared — 0. 999196,
X 1.9864 0.0199225 99 .7062 1.14353 x10° 13

AdjustedRSquared - 0. 999095,
EstimatedVariance - 0.00191941 ,

DF SumOfSq MeanSq FRatio PValue
Model 1 19 .0815 19.0815 9941 .32 1.14353 x10713
Error 8 0 .0153553 0.00191941
Total 9 19 .0968

ANOVATable -

Thus the power law is 1.98/- 0.02 (as expected) and the intercept gives the natural
logarithm of the acceleration. Hence

In[58].= accln =Exp[logfit [[111]
Out[58]= 4. 93052

Nonlinear Curve Fitting

If your data does not follow a straight line or simple polynomial, you will need to use
Mathematic& NonlinearFit functions:

In[59]:= << Statistics'NonlinearFit’

12

Example: Charging a Capacitor

Here we measure the voltage across the capacitor as a function of time. As usual, we’ll
read the data from a file:

In[60]:= chargedata = Import ["capch .dat"]

outf60]= {{15, 0.7}, {30, 1.2}, {45, 1.71}, {60, 2.13},
(75, 2.48}, {90, 2.78}, {120, 3.29},
{150, 3.66}, {180, 3.96}, {210, 4.19},
(240, 4.29}, {270, 4.49}, {300, 4.6} }

Plot the data in the usual way:

In[61]:= cdata = ListPlot [chargedata 1]

50 100 150 200 250 300

Define the function and ask Mathematica to solve for a and b:

In[62]:= chrgft = NonlinearFit [chargedata
a(l-Exp[-x/bl), x, {a, b}]
Ooutf62]= 4.83133 (1 - ¢ 0-00957528x

Plot it, adding a few extra features:

In[63]:= Plot [chrgft , {x, 0, 300},
AxesLabel - > {"Time (s)", "Voltage" 1},
PlotLabel - "Capacitor Charging Up" ,
PlotStyle -
{{Dashing [{0.03}], Thickness [0.0051]}},
Epilog - {PointSize [0.02],
Map[Point , chargedata 1}1]

13

Vol t age Capaci tor Charging Up

Tine s

50 100 150 200 250 300

The NonLinearRegressfunction gives output similar tRegress.You may not want
to display all the information.

In[64]:= chrgft = NonlinearRegress [chargedata ,
a(l-Exp[-x/b]), x, {a, b}1

Out[64]= {BestFitParameters -
{a—4.83133, b > 104. 436},

Estimate AsymptoticSE ClI
ParameterClTable —sa 4.83133 0.0275347 {4.77073, 4.89194 } ,
b 104.436 1. 43567 {101. 276, 107. 595}

EstimatedVariance - 0. 000897664 ,
DF SumOfSq MeanSq

Model 2 140 . 442 70. 2208

ANOVATable - Error 11 0 .0098743 0.000897664 |,
Uncorrected Total 13 140 . 451
Corrected Total 12 20 . 5537

AsymptoticCorrelationMatrix -

1. 0. 896223 .
0. 896223 1 , FitCurvatureTable -
Curvature
Max Intrinsic 0 . 00800664

Max Parameter - Effects 0 . 0288556
95. % Confidence Region 0 .50111

Extracting the coefficients for use in future calculations requires the '/." operator

In[65]:= values = BestFitParameters /. chrgft
Oout[65]= {a —>4.83133, b > 104. 436}

14

Apply the '/ operator a second time:

In[66]:= a2 = a/. values
out[66]= 4. 83133

In[67]:= b2 = b/. values
Out[67]= 104. 436

Example: Resistance of a Thermistor

This example shows that you need to be careful when uNioiglinearFit. The re-

sistance of a thermistor varies with temperature according=#aRp(-BT), where A

and B are constants. Temperature is in degrees Celsius and resistance is in ohms. In
this case we have entered temperature and resistance as two separate lists and used the
Table command to combine them.

In[68]:= temp = {22.3, 27.3, 29.7, 33.2, 39.7, 44.7,
49.6, 62.1, 67, 74.5, 84.4, 94.9, 99. 3};

ohms = {1501, 1298, 1054, 987, 905, 824,
643, 581, 555, 505, 398, 344, 327, 257};

tdata =Table [{temp [[i 1], ohms[[i 11}, {i, 1, Length [temp]1}];
In[69]:= thermplot = ListPlot [tdata]

1400
1200
1000
800
600

40 60 80 -100

In[70]:= fitonly = NonlinearFit [tdata , a Exp[-bx], X, {a, b}]
Oout[70]= 26. 7508 ¢ 0 421807x

In[71]:= bestline = Plot [fitonly , {x, 0, 100}, PlotRange - All]

15

25

20

15¢

10

20 40 60 80 100

This fit is no good. We need to choose new starting values and increase the number of
iterations.

In[72]:= result = NonlinearRegress [tdata , a Exp[-bx],
X, {{a, 100}, {b, -0.05}},
RegressionReport -
{StartingParameters , BestFitParameters ,
BestFit }, Maxlterations - 200]
Out[72]= {StartingParameters - {a- 100, b -» -0.05},
BestFitParameters -
{a—>2180. 84, b - 0. 0211993 },
BestFit - 2180. 84 e 0-0211993x

Plot the data and line of best fit. Note how we extract the equation of the line using the
'[” operator.

In[73]:= Show[thermplot ,
Plot [BestFit /. result , {x, 0, 300}1,
AxesLabel - {"xvalues" , "yvalues" }]

2000¢

1500

1000

500¢

50 100 150 200 250 300

16

y val ues
2000
1500
1000
500

50 100 150 200 250 300* Values

The values of a and b can be extracted from BestFitParameters for use in further calcu-
lations as follows:

In[74]:= aandb = BestFitParameters /. result
Out[74]= {a - 2180.84, b - 0.0211993 }

In[75]:= aa = a/. aandb
Out[75]= 2180. 84

In[76]:= bb = b/. aandb
Oout[76]= 0.0211993

Extracting x and y values from data
You can separate the x-values from the y-values using/ilae command. Since the
x-values are contained in the first column, then for the data set labdata, we write

In[77]:= xvals = Map[First , labdata]
out[77]- {0.5,1,1.5,2,2.5,3,3.5,4,4.5, 5}

Similarly for the y-values,

In[78]:= yvals = Map[Last , labdata]
out[78]= {8.1, 9.2, 10.5, 13.1,
15.4, 18, 20.4, 22.9, 24.5, 26. 3}

Changing x and y values

If you want to do the same operation on x and y values, the procedure for transform-
ing the data is identical to that for a one-dimensional list. Thus, to take the natural
logarithm of all the values, type:

In[79]:= logdata = Log [labdata]

17

out[79]= ({{-0.693147, 2.09186 }, {0, 2.2192},
(0. 405465, 2. 35138 }, {Log [2], 2. 57261},
(0.916291, 2. 73437}, {Log [3], Log [18]},
(1. 25276, 3.01553 }, {Log [4], 3. 13114 },
(1.50408, 3.19867 }, {Log [5], 3. 26957 }}

More often, you will want to transform the x and y data separately. Perhaps one column
of data will remain unchanged while the other is multiplied by a constant. Or you might
take the reciprocal of one column, or you might want to swap the x and y values because
you realised that you have plotted the wrong quantity along each axis of the graph.

In[80]:= new = labdata /. {x., y_-} » {x, 1/y}
Out{80]= {{0. 5, 0.123457 }, {1, 0. 108696 },

(1.5, 0.0952381 }, {2, 0. 0763359 },
1

(2.5, 0.0649351 }, {3, =},

(3.5, 0. 0490196 }, {4, 0. 0436681],

(4.5, 0.0408163 }, (5, 0.0380228) |

Note the use of the replacement operator ’/.” To swap the x and y data points, we write:

In[81]:= newl = labdata /. {x_, y-} » {y, X}

Out/81]= {{8.1, 0.5}, {9.2, 1}, {10.5, 1.5}, {13.1, 2},
{15. 4, 2.5}, {18, 3}, {20.4, 3.5},
{22.9, 4}, {24.5, 4.5}, {26.3, 5}}

Another method uses the & /@ operators. The following will take the reciprocal of the
y- values while leaving the x-values unchanged:

In[82]:= datanew = {#[[1]1]1, 1/#[[2]]1}& @ labdata ;

Think #[[1]] as meaning "the first column of the data” and #[[2]] as "the second column
of the data”. Swapping the x and y columns is very easy: you just swap the #[[1]] and
#[[2]] columns:

In[83]:= dataswap = {#[[211, #[[1]1]}&/ @labdata ;

Do not attempt to transform your data or fit your data to a straight line or curve without
first knowing what you are trying to achieve. Thiathematicasoftware is very power-

ful, but it will give meaningless numbers if you cannot assess the physical significance
of your results.

Histograms

To generate a histogram, you need to load the standard Mathematica package to set up
additional graphics functions

In[84]:= << Graphics'

18

Now we’ll import some raw data from the “Statistics of Nuclear Counting” experiment
and use th&requenciescommand to draw the histogram.

In[85]:= bardat = Import ["stats .dat"];

In[86]:= BarChart [Frequencies [bardat 1]

17.5¢

2 3 4 5 6 7 8 9 10 11

BinCounts[xdat, {xmin, xmax, d%] lists the number of elements kdat that lie in
bins fromxmin to xmaxin steps ofdx. Increasing the bin width to 2 produces the
following histogram:

In[87]:= abc = BinCounts [bardat , {2, 11, 2}1;

In[88]:= BarChart [abc]

30¢
25¢
20¢
15¢
10+

51

Text and Legends

You can insert text anywhere on a graph using a combinati&@hofyv, Graphics and
Text. For example, to put the words "Some Text” (centered3t20}) on the graph
which we calledawdata above, type:

19

In[89]:= Show[rawdata , Graphics [Text ["Some Text" , {2, 20}111]

25|
22.5¢
20¢ Some Text
17.5¢
15¢
12.5¢
10}

You can also change the orientation and font of the text. Se#&l#thematicaHelp
menu for further details. Legends can be included by loading the appropriate package:

In[90]:= << Graphics‘Legend

You can place a legend in a graph as an option Witit. Simply specify the text for
each curve. For example,

In[91]:= Plot [Sin [x], Cos[x], X, -2Pi, 2Pi, PlotStyle - >GrayLevel [0], Dashing [. 03], PlotLegend - >
"Sine" , "Cosine"]

— Sine /

— — - Cosi ne

You can include more options to change the appearance of the legend, for example,

20

0.5 N y

1 \2 3 4 , Trig Funcs
-0.5 \ /| Sine Cosine

Saving your Graph

Usually, you will be want to print out the entiMathematicavorksheet that you create.
This is so that you can show how you performed calculations and obtained the line of
best fit to a graph. Sometimes you will want to print out a graph or image separately to
in a formal report, for exampléMathematicasupports many graphics formats, includ-
ing encapsulated postscript (.eps), Adobe Acrobat portable document formt (.pdf), GIF
(.gif) and JPEG (.jpg). Suppose you want to save the graph which we called "rawdata”.
This is achieved using theDisplay” command. Decide on a hame for the graph file
(say, “myfile”) and the format you want to save it in. Thus you would type one of the
following commands to save the file in your default directory.

In[93]:= Display ["myfile .eps", rawdata , "EPS"1];
Display ["myfile . pdf* , rawdata , "PDF"];
Display ["myfile . gif* , rawdata , "GIF"];
Display ["myfile .jpg" , rawdata , "JPEG"];

21

