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Abstract

Asymmetric information can help achieve an efficient equilibrium in repeated coordination
games. If there is a small probability that one player can play only one of a continuum of moves,
that player can pretend to be of the constrained type and other players will coordinate with him.
This hurts efficiency in the repeated battle of the sexes, however, by knocking out the pure-strategy
equilibria.
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1.Introduction

It is well known that coordination games have multiple equilibria, depending on player expec-
tations, even if one equilibrium is pareto superior and players can communicate. This multiplicity
is present even in the one- shot game, and just gets worse when the game is repeated. Few of the
refinements of Nash equilibrium that have been suggested in the context of other kinds of games
help with coordination games, and none has gained more than minimal acceptance.

The problem of multiple equilibria in coordination games has attracted attention from various
authors. One way to try to predict which equilibrium is played out is to use the behavioral idea
of “focal points” from Thomas Schelling (1960): that a human’s attention is drawn to certain
equilibria because they look “different”. Thus, if a game’s equilibria had payoffs of (1,1), (2,2), and
(100,100), the focal point would be (100,100). This is a difficult notion to formalize, though: if the
alternatives were (1,1), (99,99), and (100,100) would we predict that that the players would end up
at (1,1) because it is the most distinctive?

Clearly, the idea of the focal point is important. Philosopher David Lewis (1965) divides the
idea of the salience of a choice into two parts. The choice has “primary salience” to a player
if he believes it is salient to he himself; it has “secondary salience” if he believes it has salience
to other players. Judith Mehta, Chris Starmer & Robert Sugden (1994, p. 661) add “Schelling
salience” to primary and secondary salience, as a choice that “seems obvious or natural to people
who are looking for ways of solving coordination problems.” In their article they report results of
experiments trying to distinguish between primary salience– the answers subjects gave to questions
when there was no reward for coordination– and secondary or Schelling salience– the answers when
subjects were rewarded for successful coordination. They found that subjects indeed were picking
with an eye towards what other subjects would pick; for example when asked to write down any
day of the year, only 6% of the first set of subjects answered December 25, but 44% did when they
were rewarded for successful cooperation.

A second approach tries to use derive the unique equilibrium from rationality. David Gauthier
(1975, p. 201) defines the “Principle of Coordination” as “in a situation with one and only one
outcome which is both optimal and a best equilibrium, if each person takes every other person to
be rational and to share a common conception of the situation, it is rational for each person to
perform that action which has the best equilibrium as one of the possible outcomes.” Bacharach
( 1993) John Harsanyi & Reinhard Selten (1988) and Maarten Janssen (2000, 2001) have pursued
this approach, trying to add axioms for rational behavior that require players to avoid dominated
equilibria.

Repeating the game does not reduce the number of equilibria, but it does introduce a new angle:
finding the optimal way to play a game starting without a convention as to the equilibria. What is
the optimal strategy for the two players if they must first grope their ways towards coordination by
guessing what the other player will do before they end up at the same action and use it thereafter?
That is the project in Vincent Crawford & Hans Haller (1990), who find a learning procedure that
converges in finite time.
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A third approach is to look at evolution in games. Glenn Ellison (1993), Michihiro Kandori,
George J. Mailath & Rafael Rob (1993), and Peyton Young (1993) take this approach. Start with a
population of pairwise- interacting players with different strategies. They play coordination games,
and increase or diminish in frequency depending on their payoffs. In such settings, “risk-dominant
strategies” emerge as equilibria. In a symmetric two-player setting, this is the strategy a player
would choose if he thought there was a 50% probability of the other player choosing each strategy.
The risk-dominant strategy is not necessarily the one with the highest payoff; it balances that
against the loss if discoordination does occur.

Risk-dominant equilibria also arise in the single-repetition “global games” of Stephen Morris &
Hyun Song Shin (2003). They ask what happens if players have some small uncertainty over what
game they are playing out. It turns out that iterated deletion of interim-dominated strategies can
then make the risk-dominant equilibrium the unique equilibrium.

I will show below that adding incomplete information changes the repeated game drastically.
David Kreps, Paul Milgrom, John Roberts & Robert Wilson (1982) show that adding a small amount
of carefully chosen incomplete information to the model can result in cooperation in the finitely
repeated prisoners’ dilemma. Drew Fudenberg & Eric Maskin (1986) show more generally that
adding incomplete information can generate any of a wide range of average payoffs in finite repeated
games by getting around the backwards induction of the Chainstore Paradox. Their theorem does
not apply to many coordination games, since it depends on a “dimensionality condition” that
requires payoffs to vary enough between players to allow equilibria to be supported by punishment
phases in which one player is able to punish another without hurting himself. Jean-Pierre Benoit &
Vijay Krishna (1985), however, show that if a game has multiple equilibria, as a coordination game
does, then a wide range of equilibria can be obtained if the game is repeated enough times by using
the threat of punishment phase in an inferior equilibrium to enforce the desired behavior.

I will not be be able to reduce the number of equilibria in the one- shot game, but I will show
that with a small amount of incomplete information and enough repetitions any perfect bayesian
equilibrim of even a finitely repeated two-player game will achieve arbitrarily close to the optimal
average payoff.

The results will not depend on careful specification of the incomplete information, and it is
robust to out-of-equilibrium beliefs. There will be no assumption that “Players are either of type
x = 0 or type x = 100 (with small probability), but never any other value of x.” Nor will I specify
anything like, “Out of equilibrium, the deviating player is believed to be of type x ∈ [0, 34].” Rather,
the intuition is that in coordination games, no player has an incentive to hurt other players, so any
attempt to “fool” other players by pretending to be of a particular type will be eagerly accepted by
them. This intuition is partly present in the intuition behind the Gang of Four Theorem of Kreps,
Milgrom, Roberts & Wilson (1982); here, it applies better and so the result is easier to achieve.

2. The Coordination Game with Complete Information
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Consider a ranked coordination game with n = 2 players indexed by i who simultaneously
choose actions x1, x2 from the interval [0, 100]. The per-period payoff to player i is π(xi, x−i) with:

(a)∀x, ∂π(x,x)
∂x

> 0 (b)π(0, 0) > π(xi, x−i) if xi 6= x−i (1)

Assumption (a) says that a player’s payoff rises if he chooses a higher action and the other
player chooses the same action as he does. Assumption (b) says that if the players choose different
actions their payoffs are lower than if they coordinated on (0,0).

We will normalize to π(0, 0) = 0 and π(100, 100) = 100, which is to say the per-period payoff
is 0 when both players choose x = 0 and 100 when they both pick x = 100. The assumptions then
imply that coordination on x > 0 yields positive payoffs and discoordination yields negative payoffs.

If the game is unrepeated and T = 1 it has a continuum of pure strategy equilibria with x on
the continuum from 0 to 100, as well as mixed strategy equilibria. All players prefer the equilibrium
in which x = 100.

Which equilibrium will be played out depends on player expectations. A reasonable prediction
is x = 100 because it is pareto superior to all other equilibria, a focal point. An equally special
equilibrium, however, is x = 0. It is easy to imagine how the players could be caught in any
equilibrium— if the game were preceded by a malicious outsider’s cheap talk announcement that
he expected them all to choose x = 1, for example, or if the players had a history of playing x = 5
for many periods.

Next, let the game be repeated a possibly infinite number T times, with the players observing
each other’s strategies after each round and no discounting. The equilibrium outcomes and strategies
both become more numerous. Let us classify them as follows:

In a time-dependent equilibrium, some player’s strategy in a round depends on which round
number it is. If the strategies are the same in each round, the equilibrium is time-independent.

In a history-dependent equilibrium, some player’s strategy in a round depends on the
history of play up to that point. If the strategies do not depend on past play, the equilibrium is
history- independent.

Table 1 provides examples.
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Time

Independent Dependent

Independent (a) Play 10 in each round.

(b) Play 20 in the first round
and 25 in the second.

History

Dependent
(c) Play 30 in each round unless
someone deviates, in which case
play 30 in the second round.

(d) For the first 50 rounds, player 1
picks 2 and the other players pick 14.
For the last 10,000 rounds
everyone picks 100 unless someone
deviates. If someone deviates, all pick 0
for the remainder of the game.

Table 1: Four Types of Games

Note that the history-dependent equilibria include equilibria in which the players discoordinate
in some periods, receiving flow payoffs of zero. Benoit & Krishna (1985) show that a wide array of
outcomes might be observed in equilibrium, supported by punishment strategies similar to strategy
(d) in table 1. The players choose any specified pattern of actions in the first S periods because
in equilibrium they all play x = 100 in the last (T − S) periods but if anybody deviates earlier
they all play x = 2. The observed actions, for example, might be (10, 2), ( 7, 7), (8, 3), and then
(100,100) for the last 200 periods. Thus, mere repetition of the game does not solve the problem
of multiple equilibria, and in fact, even more outcomes become possible. The average payoff could
even be negative, if the equilibrium has many periods of discoordination, so long as the average
payoff is not below the discoordination payoff.

3. Incomplete Information: The Single-Action Player

Let us modify the game in the spirit of Kreps at al. (1982), by adding a small amount of
incomplete information. Players are of two types. With some arbitrarily small probability p > 0,
a player i must play xi = zi in every round of the game, where zi is chosen from [0, 100] using a
atomless density f(zi) such that f(100) > 0. Such a player is “constrained”; otherwise, the player is
“free”. Note that the other players do not observe which players are constrained, their exact types,
or even how many there are.

What is essential is that there be some possibility a player will choose x = 100 and stick with
it, which is true of the specification above. All that is needed is a possibility, however small, and
it can even have probability zero in the mathematical sense. That is the case in our specification,
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since any particular value of z has zero probability, despite having positive probability density.
What that means is simply that we would predict any particular value of z (e.g. 97.345) with zero
probability, even though we would predict a positive probability for any interval of types (e. g. [97,
98.5]).

How do we interpret the incomplete information? It might be that a constrained player is
truly constrained, or that he misunderstands the rules of the game, or he is irrational and thinks
all players will make the same choice as he does (psychology’s “magical thinking”; see Brendan
Daley & Philipp Sadowski [2016]). If we use a different specification, such as that there is a .0001%
probability that a player is constrained to use z = 100, then we could interpret it as that the
constrained player wishfully thinks that the equilibrium will be the pareto-optimal one (perhaps
having read some of the references above) or thinks, for whatever reason, that if he starts with
x = 100 the other players will join him.

In the modified game, some equilibria disappear, as Example 1 shows.

Example 1. Suppose T = 20 and the payoff from discoordination is −500. Is it an equilibrium
for a free player to follow the strategy x = 5 in every period and for a constrained player of type z
to play x = z? No.

Consider what happens if player 1 deviates to x = 100 in the first round. Is it a best response
for player 2 to play x = 5 in the second round? That depends on player 2’s beliefs,which are
generated by Bayes’s Rule:

Prob(z1 = 100|x1 = 100) = Prob(x1=100|z1=100)∗Density(z1=100)
Prob(x1=100|z1=100)∗Density(z1=100)+Prob(x1=100|z1=free)∗Prob(z1=free) (2)

The priors tell us that Prob(player 2 is free) = 1 − p and Density(z1 = 100) = f(100)p. In
the proposed equilibrium, Prob(x1 = 100|z1 = 100) = 1 and Prob(x1 = 100|z1 = free) = 0. Thus,
equation (2) becomes

Prob(z1 = 100|x1 = 100) =
(1) ∗ f(100)p

(1) ∗ f(100)p+ (0) ∗ (1− p)
= 1. (3)

After the first round, Player 2 therefore believes that Player 1’s type is z1 = 100, so he
concludes that x1 = 100 for all future rounds. Player 2’s best response is not x = 5, but to imitate
Player 1’s action, deviating to x2 = 100. If both players then stick with x = 100, their payoffs
are (−500 + 19(100),−500 + 19(100)) compared to the (20(5), 20(5)) they would have gotten in the
proposed equilibrium. Thus, Player 1’s deviation has been profitable.

It is not true, however, that the only equilibrium in Example 1 is for a player to start with x =
100 and to choose in the second and succeeding periods whatever the other player chose in the first
period. If x = 99.9, it is not worth bearing the initial cost of −500 to deviate. Rather, what we can
say is that for large enough w a time- independent equilibrium strategy must have a player beginning
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with x = w and then choosing in the second and succeeding periods whatever the other player
chose in the first period. In such an equilibrium, the equilibrium payoff is (20w, 20w). The optimal
deviation is to x = 100, which generates a deviation payoff of (−500 + 19(100),−500 + 19(100)).
There is no incentive to deviate from equilibrium if and only if w ≥ 92.5.

Example 1 is the essence of this paper. If information is incomplete, then a player can break
out of a bad equilibrium at some cost by pretending to be of an unusual type. If the game is
repeated long enough, it is worthwhile to bear that cost. Thus, if T is large enough, the game has
a much smaller interval of equilibria and the average payoff becomes arbitrarily close to 100.

Proposition 1: For any ε, there exists T large enough that in all pure-strategy equilibria the average
payoff approaches within ε of the optimum:

∀ε > 0,∃T :

∑T
t=1 πit
T

> 100− ε. (4)

Proof. The probability that a player is constrained is an arbitrarily small p, so the effect that the
presence of truly constrained players have on the average equilibrium payoffs will be less than ε.

Let the equilibrium with the lowest average payoff call for the players to first choose (a, b) with
a or b or both not equal to 100 in round t1. Without loss of generality, suppose that player 1 chooses
a 6= 100.

The minimum bound on the payoff is set by player 1 having the deviation option to choose
x = 100 in that period and convince player 2 that player 1 is constrained of type z = 100. Both
players would choose x = 100 for every succeeding round. This would generate a payoff of π(100, b)+
100(T − 1), where π(100, b) is the discoordination payoff that arises from that particular deviation,
since there would be one period of discoordination and all other periods will have per-period payoffs
of 100. This strategy will have an average payoff of

π(100, b)

T
+

100(T − 1)

T
= 100 +

π(100, b)

T
− 100

T
. (5)

If T is large enough, the last two terms, which are both negative, shrink to less than whatever small
amount ε we might choose. Q.E.D.

The equilibria will be in actions with an average payoff in the interval [100 − ε, 100] for some
ε that depends on T . This set of equilibria does not depend heavily on the out-of-equilibrium
payoffs–just for one period of discoordination loss– and therefore it is not necessarily the same as
the set of risk-dominant equilibria. It could be, for example, that for x in [0,50] the discoordination
payoff if the other player chooses a different x is −1, but for x in (50, 100] it is −5, 000, in which
case the risk-dominant equilibrium would be (50,50), not (100,100).
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4. Three or More Players in the Incomplete Information Game

Now let us allow for more than two players. Consider a ranked coordination game with n ≥ 2
players indexed by i who simultaneously choose actions x1, ..., xn from the interval [0,100]. If m(xi)
players choose the same action xi, the per-period payoff to player i is πi(xi, x−i,m(xi)), with:

(a′)∂πi(xi,x−i,m(xi))
∂xi

≥ 0

(b′)∆πi(xi,x−i,m(xi))
∆m(xi)

> 0,

(c)∂
2πi(xi,x−i,m(xi))

∂xi∂xj
= 0

(d)πi(0, x−i, n) > πi(100, x−i, n− 1),

(e)πi(w, x−i, l) > πi(w
′, x−i, l − 1)∀l, w, w′ 6= x

(6)

Assumption (a’) says that the payoff to player i rises or stays the same as the magnitude of the
group action xi rises– from 88, say, to 89. Assumption (b’) says that the payoff to choosing action
xi rises from being in a bigger group.

Assumption (c) says that the payoff to player i from choices made by players who choose
discoordinating actions does not depend on which actions they choose.

Assumption (d) says that group size matters more than action size: the payoff to i from
choosing xi = 0 in a group of n is bigger than from choosing xi = 100 in a group of size n − 1.
Assumption (e) is a more general version of (d), saying that a larger group always gets a bigger
payoff, no matter what the size of the action.

My colleagues Michael Rauh and Michael Baye suggested the following as a payoff function
that satisfies assumptions (a’) through (e)

πi(xi, x−i,m(xi)) = [m(xi)(1 + xi
1000

)− n](100/1.1n) (7)

or, without our normalization of πi(0, x−i, n) = 0 and πi(100, x−i, n) = 100,

πi(xi, x−i,m) = m(xi)(1 +
xi

1000
) (8)

The complete information game has the usual continuum of equilibria, just as when there are
just two players. How about the incomplete information game? Consider Examples 2 and 3.

Example 2. Let there be incomplete information of the following form: with some arbitrarily
small probability p > 0, player i is “constrained” and must play xi = zi in every round of the game,
where zi is chosen from [0, 100] using a atomless density f(zi) such that f(100) > 0. Let there be
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three players, and consider whether it is an equilibrium outcome to play (5, 5, 5) each of T periods.
Suppose player 1 deviates to x1 = 10 in the first period. A unilateral switch by one of the other
two players from 5 to 10 would be profitable in the long run in the incomplete information game.

Example 3. Let there be incomplete information of the following form: with some arbitrarily
small probability p > 0, player i is “constrained” and must play xi = zi in every round of the
game, where zi is chosen from [0, 100] using a atomless density f(zi) such that f(100) > 0. Let
there be four players, and consider whether it is an equilibrium outcome to play (5, 5, 5, 5) each
of T periods. Suppose player 1 deviates to x1 = 100 in the first period. Even if player 1 were
truly of type z = 100, a unilateral switch by one of the other three players from 5 to 100 would be
unprofitable if πi(x = 5,m = 3) > πi(x = 100,m = 2). Thus, (5, 5, 5, 5) would be an equilibrium
outcome. Incomplete information does not reduce the number of equilibria.

The situation changes if we change the form of the incomplete information. What is needed
now is a more-than-infinitesimal probability of a given constraint value of z. Recall our alternative
specification of incomplete information in which player i has probability .01 of being constrained to
play xi = 100. In that specification, the probability is not zero; it is strictly positive.That makes a
huge difference, as we see in Example 4.

Example 4. Let there be incomplete information of the following form: with some small probability
p > 0, player i is “constrained” and must play xi = 100 in every round of the game. Let there be
four players, and consider whether it is an equilibrium outcome to play (5, 5, 5, 5) each of T periods.
Assume that if the players do not all play the same action, their period payoff is zero. Suppose
player 1 deviates to x1 = 100 in the first period. With probability .993, he is the only player to play
10, and the other players do not imitate him in future periods for the same reason as in Example 3.
But with probability 1− .993, at least one of the other players is a true constrained player who also
plays 10. If that happens, then in the second and succeeding periods, the remaining two players
will play 10. Thus, the expected payoff from deviating (and returning to playing 5 if no other player
player 10 in the first period) will be greater than .993∗(0+(T−1)(5))+(1− .993)(0+(T−1)(100) (I
say “greater than” because it is slightly higher because of the possibility that not just one, but two
or even all three of the other players are constrained to play 100). If T is great enough, the deviation
payoff is greater than the proposed equilibrium payoff of 5T . It is worth the high probability of one
period with a payoff of 0 in order to have a chance at (T − 1) periods with a payoff of 100. If the
deviation is profitable, however, then all four of the players will choose 100 in the first and every
period, constrained or not.

Thus, with four players, or more, incomplete information can still justify a unique efficient
equilibrium. The story is a little different, though, because if expectations begin with some action
less than 100, the player who deviates puts high probability on his deviation being unprofitable—
it is just that if it does work out successfully he gets a very large payoff increase. For this to work,
T must be much larger than when there are only two or three players.

5. Mixed Coordination-Conflict Games: The Battle of the Sexes
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Incomplete information can actually hurt in mixed coordination- conflict games, by destroying
the possibility of pure-strategy equilibria. Consider the Battle of the Sexes in Table 2. It has
two pure strategy equilibria, (prizefight, prizefight) and (ballet, ballet), and a mixed strategy
equilibrium. in which the man plays prizefight with probability m = A/(A + B) and the woman
with probability w = B/(A+B).

The total payoff in the two pure-strategy equilibria are (A, ) and (B,A). The man’s one-shot
expected payoff is then AB/(A + B), which is less than B since B < A + B. The man’s expected
payoff (and analogously the woman’s) in the mixed- strategy equilibrium is lower even than in the
pure-strategy equilibrium he likes least.

Table 2: The Battle of the Sexes

Woman
prizefight Ballet

prizefight A,B 0,0
Man

Ballet 0,0 B,A

Payoffs to: (Man, Woman). A > B.

The T -repeated game has many subgame perfect equilibria, but let us focus on the three
time-independent and history-independent equilibria that repeat the single-period equilibria just
described.

Now let us add incomplete information, in the form of constrained players. With probability
p1, the man is constrained to play Prizefight and with independent probability p2 the woman is
constrained to play Ballet. This change eliminates (Ballet, Ballet) and (Prizefight, Prizefight)
as equilibria. Suppose the woman thought (Ballet, Ballet) was the equilibrium. The man would
begin the game by playing Prizefight. The woman would conclude that the man was constrained,
and would play Prizefight in all future rounds, so the man would have succeeded in increasing
his payoff (if there are enough rounds) to one round of (Ballet, Prizefight) and T − 1 rounds of
(Prizefight, Prizefight). The equilibrium (prizefight, prizefight) would similarly fail.

The mixed strategy equilibrium survives. If the man deviates to playing prizefight as a pure
strategy, the woman will interpret this as a realization of the equilibrium strategy. This is ironic,
however, because the man’s ability to knock out the pure-strategy equilibrium of (Ballet, Ballet)
ends up hurting him: his payoff is higher in that equilibrium than in the mixed-strategy equilibrium
that survives.

Closing Remarks

Thus, we see that in repeated Ranked Coordination, the efficient equilibria are robust to
incomplete information but the inefficient equilibria are not, whereas in the Battle of the Sexes the

10



opposite is true. This model has used a particular specification of incomplete information, to be
sure, but if we added other incomplete information without removing the possibility of constraint
in this model, the results would often stay the same. The key to the result is that if there is some
chance that a deviation beneficial to the deviator will be interpreted as predicting that he will
choose the same action in the future, the player will have incentive to deviate.
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