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Abstract

We characterize the mixed-strategy equilibria for the bargaining game in which two players simultaneously bid

for a share of a pie and receive shares proportional to their bids, or zero if the bids sum to more than 100%.

Of particular interest is the symmetric equilibrium in which each player’s support is a single interval. This

consists of a convex increasing density f1(p) on [a, 1 − a] and an atom of probability at a, and is unique for

given a ∈ (0, .5). The two outcomes with highest probability are breakdown and a 50-50 split. We use the

same approach to characterize all symmetric and asymmetric equilibria (such as “hawk-dove”) that mix over a

finite set of bids, and for general sharing rules. We extend Malueg’s 2010 existence proof with any “balanced”

compact set A ∈ (0, 1) as bid supports to uniqueness. We provide explicit formula for any equilibrium density

in terms of finite discrete approximants, and an exact power series density for the case when the support is an

interval.

See our (link to seminar web page with slides and handouts and the paper or go via https://www.rasmusen.org/rasmapedia.
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PART I: The Econ Part
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The Situation

Rep. Pelosi and Presidet Biden each want 100% of the publicity for passing

the stimulus bill. They meet to decide on what to say about each other. If

they can’t agree and end up being mean to each other, they both end up with

a net 0% good publicity.

Thus, if they are both hard-nosed and go in asking for 80%, they both end

up with payoffs of 0.

If Pelosi asks for 80% and Biden asks for 20%, they will agree, and that is

what will happen.

What if Pelosi goes into the negotiation with a “soft” strategy of asking for

20%, and so does Biden?
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What Happens If Both Players Adopt Soft Strategies?

What if Pelosi goes into the negotiation with a “soft” strategy of asking for

20%, and so does Biden?

I think if both go in equally soft, they will each end up with 50%. They

won’t just agree to 20% each and give 60% to the Republicans.

I think a good prediction is that if Pelosi decides on a soft strategy of 20%

and Biden decides on a moderate strategy of 40%, then Pelosi will come out

with 1/3 and Biden with 2/3 of the credit.
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The Model

Players 1 and 2 simultaneously choose bids p and q in the interval [0,1].

If their bids add up to more than 100%, then we say breakdown occurs,

and both get zero.

Otherwise, Player 1 gets share p/(p + q) as his payoff and Player 2 gets

q/(p + q).
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Pure Strategy Equilibria

Splitting a Pie has a continuum of pure strategy Nash equilibria: every pair

of bids with p + q = 1.

There are also many mixed-strategy equilibria, some with bidding over a

finite set of points, some with bidding over a continuum.
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Hawk-Dove Equilibria for Splitting a Pie

The simplest mixed strategy for Splitting a Pie has the two players each

mix over the same two bids.

This is a hawk-dove equilibrium, mathematically the same as the well-

known biological model of birds deciding whether to pursue aggressive or

timid strategies.

One of the Hawk-Dove Equilibria: Each player chooses .30 with prob-

ability .6 and .70 with probability .4 The expected payoff is .42. With prob-

ability .16, they both choose .70 and the pie explodes.
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Finding the Hawk-Dove Equilibria for Splitting a Pie

Each player chooses a with probability θ and 1 − a with probability 1 − θ

for a ≤ .5. The two bids must add up to 1 because otherwise it would be

a profitable deviation for one player to choose a bigger number for his lower

bid, increasing his share without any greater likelihood of breakdown.

The mixing probabilities must make each action’s expected payoff the same

in equilibrium, so

π(a) = θ(.5) + (1 − θ)a = π(1 − a) = θ(1 − a) + (1 − θ)(0), (1)

which solves to θ = 2a and π0 = 2a(1 − a).

The players share the pie equally in equilibrium with probability a2 and

bargaining breaks down with probability (1−a)2. Note that there are a con-

tinuum of equilibria since any value of a in (0,1) can support an equilbrium,

and they can be pareto-ranked, with higher payoffs if a is closer to .5.



9

Observe that θ < 1/2 for a < 1/4, so the players actually choose the higher

of their two bids (hawk) with the highest probability, which is one difference

from the standard hawk-dove game in biology.
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Asymmetric Hawk-Dove Equilibria

We might have Player 1 choosing .1 and .4 with probabilities of about .28

and .72, for a payoff of about .11.

Player 2 choosing .6 and .9 with probabilities of about .93 and .07, for a

payoff of about .84.

DEFINITION. The player’s bid supports are balanced if and only if element

s being in Player 1’s support A implies that 1− s is in Player 2’s support B,

and vice versa.

An example of a symmetric balanced support for an interval equilibrium is

both players mixing over [.2, .8].

An example of an asymmetric balanced support is Player 1 mixing over

[.2, .4] and Player 2 over [.6, .8].
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The Nash Demand Game: The “Take what you bid” Sharing

Rule

In this game, the players bid p and q, and they receive p and q as payoffs

if p + q ≤ 1, but zero if p + q > 1 (Nash [1953]).

In the context of bargaining, if the players reach agreement but they have

both bid low, they agree to abandon the remainder of the pie. This is not

suitable for bargaining, but it provides a good model for other situations, e.

g. two hunters independently choose how aggressively to pursue a deer that

neither might catch if they are too timid or too aggressive.
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The Nash Demand Game: Equilibrium

Example of a mixed-strategy equilibrium for the Nash Demand Game: each

player bids a with probability K and then mixes using density f over the

interval [a, 1 − a].

Player 2 can guarantee a payoff of a by bidding a, since p+a ≤ 1 for any bid

p Player 1 might play. Player 2 will have a payoff of K(1 − a) from bidding

(1−a), since p+(1−a) > 1 for any bid p Player 1 might play except for p = a,

which has probability K. Since Player 2 is only willing to mix between bids if

they have equal expected payoffs, this implies π(a) = a = π(1−a) =K(1−a)

and we can conclude that K = a
1−a.
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The Nash Demand Game: Finding the Equilibrium Density

For bids between a and 1 − a, Player 2’s expected payoff is

π(q) =Kq + ∫
1−q

a
qf(p)dp, (2)

which we can rewrite using F as the cumulative distribution and our knowl-

edge that K = a
1−a, and combine with the requirement that π(q) = π(a) = a

to yield

π(q) = (
a

1 − a
) q + qF (1 − q) = a. (3)

Using the change-of-variables p = 1−q, this becomes ( a
1−a) (1−p)+F (p)(1−

p) = a, which solves to F (p) = a
1−p −

a
1−a, which can be differentiated to yield

the equilibrium mixing density, f(p) = a
(1−p)2.
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What’s Easy To Solve about the Nash Demand Game

The Nash Demand Game is easy to solve because each player’s payoff func-

tion depends on the other player’s bid only if breakdown occurs. If the bids

add up to less than one, a player’s payoff is entirely independent of what

the other player does. This is what allows us to move smoothly from equa-

tion equation (2)’s ∫
1−q
a qf(p)dp to equation (3)’s qF (1 − q). If Player 2’s

share of the pie depended on Player 1’s bid via some function v2(q, p) in-

stead of just being his own bid q, equation (2) would have the expression

∫
1−q
a v2(q, p)f(p)dp and it would no longer be straightforward to extract

f(p) from the integral. The purpose of the present paper is to discover

how to do this, with particular attention to the proportional-sharing case of

v2 =
p
p+q .
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Interval Equilibria

Each player bids over a single interval– e.g. both mix over [.2, .8], or Player

1 mixes over [.2, .4] and Player 2 over [.6, .8].

Proposition 1: Any equilibrium in which each player mixes over an inter-

val

(a) consists of probability atom K1 at a and density f1(p) on [a, b] for Player

1

(b) and of probability atom K2 at 1 − b and density f2(q) on [1 − b, 1 − a]

for Player 2.

(c) The densities are positive throughout, and if their derivatives exist, the

densities start strictly positive with f1(a) = ( a
1−a)K1 and f2(1−b) = (1−b

b )K2

(d) and increase convexly

(e) with positive derivatives of every order.
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Four Examples

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
bid p

2

4

6

8

density f1(p)

0.25 0.44
0.64 0.81

Figure 1. The Symmetric-Equilibrium Mixing Density f1(p) and Atom K1 for a = .10, .20, .30, .40
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The Expected Payoff Function

The fundamental equation that characterizes the equilibrium then says that

Player 1’s f1 and K1 must be such that Player 2’s expected payoff from any

q in his support equals that from playing q = 1 − a:

π2(q) =K1 (
q

q + a
)+∫

1−q

a
(

q

q + p
) f1(p)dp =K1(1−a) (the crucial equation)

(4)

For every q in Player 2’s support.

dπ2(q)

dq
=

aK1

(q + a)2
+ ∫

1−q

a
(

p

(p + q)2
) f1(p)dp − qf1(1 − q) = 0. (5)
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The Derivative Expression

For every q in Player 2’s support.

dπ2(q)

dq
=

aK1

(q + a)2
+ ∫

1−q

a
(

p

(p + q)2
) f1(p)dp − qf1(1 − q) = 0.

The first two terms are the advantages of using a higher bid q. The first

term represents the extra payoff from Player 2’s share increasing when Player

1 chooses the atom bid of 1 − b, which never causes breakdown. The second

term represents Player 2’s extra payoff as the result of his share increasing

when he raises q if Player 1 bids between 1 − b and q so raising q does not

cause breakdown. The third term is Player 1’s disadvantage from bidding

higher. It represents the increase in the probability of breakdown, and the

resulting loss of the share q. The crucial level of p is p = 1 − q, since that is

at the edge of breakdown. The probability of Player 1 choosing that bid is

f1(1 − q), and since the two player’s bids add up to 1 at that bid, Player 2’s

lost pie share is q if that happens.
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More on the Derivative Expression

dπ2(q)

dq
=

aK1

(q + a)2
+ ∫

1−q

a
(

p

(p + q)2
) f1(p)dp − qf1(1 − q) = 0.

To see why the equilibrium density is increasing, think of how the marginal benefits and cost change for Player

2 as q rises. Imagine if the f1 density were uniform instead of increasing. Both of the advantage terms would

be larger for small q, because the effect on the share of increasing the bid is bigger from a lower base. Also,

the second advantage term, the integral, is bigger for small q because it includes a larger probability range

[a, 1 − q] over which the shares add up to less than one and breakdown is avoided. If we start with a large q,

near the top of the support, then increasingq yields a greater share, but obtained with small probability; most

of the expected payoff from a high q is coming from the atom of probability with which Player 1 bids 1 − b.

This gives one reason why f1(p) has to be rising— so that a small q’s greater range of p’s that don’t cause

breakdown is offset by a smaller density over that range.
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Still More on the Derivative Expression

dπ2(q)

dq
=

aK1

(q + a)2
+ ∫

1−q

a
(

p

(p + q)2
) f1(p)dp − qf1(1 − q) = 0.

The second reason why f1 must increase is the third-term marginal cost of

increasing q and increasing the probability of breakdown, a marginal cost of

qf1(1 − q). The density takes the argument 1 − q because p = 1 − q is the

threshold for breakdown, and hence f1(1 − q) is the rate of increase of the

probability of breakdown as q increases. If f1 were uniform, the marginal cost

would increase with q, because a constant rate of increase in the probability

of breakdown causes Player 2 more harm when his share is bigger. Thus, f1

must be rising, so it is smaller for the critical 1− q threshold when q is large.
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Asymmetric Equilibria

There also exist asymmetric interval equilibria, as shown in Figure 2 (again,

using our explicit formula from later in the paper). Player 1 bids an atom

of .94 at a = .2 and mixes over [.2, .4],while Player 2 bids an atom of .33 at

a = .6 and mixes over [.6, .8].

The supports are balanced because .2+.8 and .4+.6 equal 1. Player 2 always

bids more and will have a higher expected payoff, and the modal outcome

will be a share of .25 for Player 1 and .75 for Player 2, as a result of bids of

p = .2 and q = .6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
bid

1

2

3

4

5

6

7

density

f1(p)

f2(q)

0.33

0.94

Figure 2. The Asymmetric-Equilibrium Mixing Densities f1(p) over [.2,.4] and f2(q) over [.6, .8]



22

PART II: The Math Part
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Proposition 1. Splitting a Pie with the proportional sharing rule has

unique interval equilibrium mixing strategies among Borel measures for

each pair of supports. Players 1 and 2 use increasing, convex (with all

derivatives positive), real-analytic densities f1(p) on [a, b] and f2(q) on

[1 − b, 1 − a] with 0 < a < b < 1 and atoms of probability K1 at a and K2

at 1 − b such that:

f1(p) = aK1∑
i≥0

m(i)(a)

i!
(p − a)i, K1 =

1

1 + a∑i≥0
m(i)(a)
(i+1)!

(b − a)i+1
, (6)

and

f2(q) = (1−b)K2∑
i≥0

m(i)(1 − b)

i!
(q−(1−b))i, K2 =

1

1 + (1 − b)∑i≥0
m(i)(1−b)

(i+1)!
(b − a)i+1

(7)

with m(i)(⋅) for both densities recursively expressed as:

m(i)(x) =
(i + 1)!

(1 − x)
+
i−1

∑
j=0

((j + 1)(i − 1 − j)! + (i − j)!x)

1 − x
m(j)(x). (8)
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If we expand out the first few terms f1 evaluates to:

f1(p) =aK1 (
1

(1 − a)
+ (

3 − a

(1 − a)2
)(p − a) + (

13 − 10a + 3a2

2(1 − a)3
)(p − a)2 +

(
71 − 89a + 55a2 − 13a3

6(1 − a)4
)(p − a)3 +∑

i≥4
(
m(i)(a)

i!
)(p − a)i

⎞

⎠
.

(9)
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Existence and Uniqueness Generally: Compact Set Supports

and General Sharing Functions

We will make the following assumptions on our sharing rules.

Assumptions (⋆). For players i = 1 and 2 bidding p and q the sharing

rules vi satisfy the following properties:

(1) vi ∶ [0, 1] × [0, 1] → [0,∞) are Borel measurable and continuous on

(0, 1] × (0, 1].

(2) v1(p, 0) > v1(0, 0) and v2(0, q) > v2(0, 0) for all p, q ∈ (0, 1].

(3) v1(p, q) is nondecreasing in p and nonincreasing in q, and strictly

increasing in p if q > 0.

(4) v2(p, q) is nonincreasing in p and nondecreasing in q, and strictly

increasing in q if p > 0.



26

Proposition (Malueg). Let A and B be balanced nonempty finite subsets

of the open interval (0, 1): if and only if element s is in A then 1 − s is

in B. There exists a unique equilibrium in which Player 1 mixes over A

and Player 2 mixes over B.

Proposition 2. Given the general assumptions (⋆) on the players’ pay-

offs, for any compact set A ⊂ (0, 1), there exists a unique equilibrium

among positive measures with Player 1’s support set exactly A. Player

2’s support will be exactly 1 −A.

Proposition 3 is more radical than it might seem. The term “any compact

set A ∈ (0, 1)” covers more than just finite sets of points and intervals. It

also includes, for instance, the Cantor set, which has measure zero but an

uncountable number of points.
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Proposition 3. Given the general assumptions (⋆) on the players’ pay-

offs, assume further that a player’s payoff is 0 from the action 0 (the

same payoff as for breakdown), so v1(0, q) = 0 for all q > 0 and v2(p, 0) = 0

for all p > 0. All equilibrium measures with supports A and B for players

1 and 2 that include an endpoint {0} or {1} are classified as follows.

(1) If 0 ∈ A then Player 1 has an atom at 0 and Player 2 always bids 1:

µ1(0) > 0 and µ2 = δ1. Player 1’s expected payoff is π1 = 0 and Player

2’s expected payoff can be any value π2 ∈ (0, v2(0, 1)].

(2) If 1 ∈ A and 1 /∈ B then µ1 = δ1 and µ2(0) > 0. Player 2’s expected

payoff is π2 = 0 and provided v1 is continuous, Player 1’s expected

payoff can be any value π1 ∈ (0, v1(1, 0)].

(3) If 1 ∈ A and 1 ∈ B then either µ1 = µ2 = δ1, or µ1 = δ1 and

µ2(0) > 0, or µ2 = δ1 and µ1(0) > 0. For any pair of values (π1, π2) ∈

{0}× [0, v2(0, 1))⋃[0, v1(1, 0))× {0}, there exists an equilibrium with

expected payoffs (π1, π2).
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All remaining cases (0 or 1 in B) are found by switching A and B and

the roles of Player 1 and Player 2. Moreover, any choice of supports

A,B satisfying the above conditions generate some equilibrium.
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Proposition 4. For any finite support A = {p1, p2, . . . , pn} with 0 < p1 <

p2 < ⋅ ⋅ ⋅ < pn < 1, provided v(pj, 1 − pj) ≠ 0 for j = 1, . . . , n, the unique

equilibrium is the probability measure µ = ∑
n
j=1wjδpj, where the weights

wj > 0 are given explicitly by: wj = π1ωj, where

ωj =
1

v(pj, 1 − pj)
+

j−1

∑
r=1

(−1)r ∑
1≤i1<i2<⋅⋅⋅<ir<j

v(pi1, 1 − pi2)⋯v(pir−1
, 1 − pir)v(pir, 1 − pj)

v(pi1, 1 − pi1)v(pi2, 1 − pi2)⋯v(pir, 1 − pir)v(pj, 1 − pj)
.

and the payoff is π1 =
1

∑j ωj
.

Since v(pj, 1−pj) = 1−pj > 0 provided pj ≠ 1, for the proportional sharing

rule v(p, q) = q
q+p, the weights wi = π1ωj simplify to

ωj =
1

1 − pj
+

j−1

∑
r=1

(−1)r ∑
1≤i1<i2<⋅⋅⋅<ir<j

1

(1 − pi1)(1 + pi1 − pi2)(1 + pi2 − pi3)⋯(1 + pir−1
− pir)(1 + pir − pj)

> 0
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and the payoff is π1 = (∑
i
ωi)

−1

. The first three ωi are:

ω1 =
1

1 − p1
,

ω2 =
1

1 − p2
−

1

(1 − p1) (1 − p2 + p1)
,

ω3 =
1

1 − p3
−

1

(1 − p1) (1 − p3 + p1)
−

1

(1 − p2)(1 − p3 + p2)
+

1

(1 − p1) (1 − p2 + p1) (1 − p3 + p2)
.
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Let us now think what happens as the number of discrete bids in the support

becomes large. . It will turn out that as we increase the number of points in a

discrete support over that interval, the discrete-mixing equilibrium will indeed

approach the continuum-mixing equilibrium, but if the discrete support is

over just a few points, the shape can be very different.

Suppose there are three bids used for mixing. The lowest must be chosen

so it and the highest add up to one, to satisfy the balancing condition. The

middle bid must equal .5 to satisfy the balancing condition, since it will have

no matching bid with which to sum to one.

For a = .3 the probabilities are approximately 0.61 at 0.3, 0.10 at 0.5, 0.29

at 0.7. This is the same pattern we have found for our continuous-support

mixed-strategy equilibrium—a high atom at the minimum, then low density,

but rising monotonically to the maximum bid.
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This turns out not to be always true for multi-bid mixing equilibria, as

Figure 3 shows. Monotonicity of the ωi for i > 1 fails for the simple example

of support {1
4,

1
3,

2
3,

3
4}. Here, the bids in the support are unevenly spaced. In

a loose sense the third bid, 2
3, has more space to cover than the fourth bid,

and so takes a bigger probability.

But perhaps if the number of the points in the support increased enough,

the discrete equilibria would converge to the continuous equilibrium. This

conjecture turns out to be true, once we formalize “increased enough” and

“converge” to make it precise. In our last proposition we will show that as

the finite support becomes more dense, even if it is unevenly spaced, the equi-

libria will converge to the unique continuous-interval equilibrium we found

in Proposition 2 and thus will approach an atom followed by a convexly

increasing density.



33

0.2 0.4 0.6 0.8 1.0
bid p1=p20.0

0.1

0.2

0.3

0.4

0.5

probability f(p1)

Figure 3. A Nonmonotonic Symmetric Equilibrium f1(p) Arising from an Unevenly Spaced Support {1
4 ,

1
3 ,

2
3 ,

3
4
}

Proposition 5. Given the general assumptions (⋆) on the players’ pay-

offs, for any compact subset K ⊂ (0, 1) let µK be the unique equilibrium

probability measure guaranteed by Proposition 2. If Ki is any sequence of

compact sets converging to K in the Hausdorff metric, then µKi
weak-*

converges to µK.

In particular, using the proportional sharing rule, as the number of bids in

a discrete support becomes dense in an interval [a, b] ⊂ (0, 1), the mixing

probabilities for the equilibrium with the discrete support converge to the

mixing atom and density of Proposition 1.
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Thus, although the mixing distribution for an equilibrium mixing over a

discrete set of bids may appear qualitatively different from that mixing over

a continuous interval of bids, as the number of discrete bids increases and

fills up the interval, the discrete equilibrium will come to look more and more

like the continuous equilibrium. Similarly, we could even take a sequence

of Cantor sets Hausdorff converging to [a, b] and their equilibria would also

converge.


