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Moral hazard in risk-averse teams

Eric Rasmusen*

Holmstrim (1982) has shown that a non-budget-balancing contract induces a team of risk-
neutral agents to choose the first-best effort levels. This is not generally true when agents are
risk averse. Furthermore, a “massacre” contract, which punishes all but one agent when the
autcome is low, can attain the first best over a wider range of parameters than any other
budget-balancing contract.

“No, they have na railroad accidents to speak of in France. But why? Because when one occurs, somebody has to
hang for it! Not hang, maybe, but be punished at least with such vigor of emphasis as to make negligence a thing
to be shuddered at by railroad officials for many a day thereafter. ‘No blame attached to the officers’—that lying
and disaster-breeding verdict so commen to our soft-hearted juries, is seldom rendered in France.”

—Mark Twain, The Innocents Abroad, chap. 12

1. Introduction

M Holmstrom's 1982 article, “Moral Hazard in Teams,” begins with a theorem that shows
that no contract that is “budget-balancing,” allocating all of the team’s output to the members
of the team, can induce the members to choose the efficient effort levels. Instead, the efficient
output is obtained by a contract giving each member of the team a payoff of zero if output
is lower than if all members had chosen the efficient effort levels. Such a contract is not
entirely satisfactory from a modelling point of view because it requires a commitment to
discard an output that is even slightly below the efficient level. Once a low output is observed,
all of the team members would like to repudiate their contract and share the output among
themselves. To commit to losing it, they must introduce an outsider to whom they agree
to surrender all of the output whenever it is insufficient.

Holmstrém’s theorem, however, depends on the agents’ utility functions’ being linear
in money. If agents are risk averse, they can use their risk aversion to write the efficient
budget-balancing contract that I shall describe below. Holmstrém is not in error, but readers
of his article, accustomed to models in which risk aversion prevents, rather than permits,
the first best to be obtained, might be misled. Fortunately, the validity of the results in
Holmstrém’s later sections is unaffected, since by relaxing the requirement that all contracts
be budget-balancing, he does not exclude such contracts from his later propositions.

I shall also show that of the many efficient budget-balancing contracts, the “massacre”
contract, in which one randomly selected agent benefits and all the others are punished
when an out-of-equilibrium cutcome is observed, is feasible more often than any other

* University of California, Los Angeles.
I would like to thank Dilip Mockherjee, Sheridan Titman, Brett Trueman, and an anonymous referee for
helpful comments.
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contract. In particular, the massacre contract is feasible for a larger set of parameters than
the “scapegoat™ contract, in which one agent is punished and the others benefit,

Section 2 describes the model and Holmstrém's original result. Section 3 constructs a
budget-balancing contract of the scapegoat type and shows when it can induce the first-best
effort level. This is followed by general comments on budget-balancing. Section 4 compares
different kands of budget-balancing contracts and shows that the massacre budget-balancing
contract is most often feasible. Concluding remarks appear in Section 5.

2. The Holmstrém model

B I shall use Holmstrdm’s notation. Each of » agents indexed by / takes an unobservable
action or effort level 4; € [0, oo). Write

a—i:(al: ceea iy i, 1an) and a:‘(aia a—f)'

The value of output is a function x(a}, which is strictly increasing, concave, and continuously
differentiable. OQutput depends only on the effort levels; there is ne random error.

The compensation rule specifies 5,{x) as agent I"’s compensation if the output is x. Effort
is not observable, so that compensation cannot be a direct function of a;. Moreover, agent
{ has limited liability, and his compensation cannot be less than the liability bound of

§; = —wj, where we assume that «; = 0. Agent i’'s utility function is separable in money and
effort and can be written in the form
u;(s;, &} = my{s) — vilay). (1)

The disutility of effort v; is continuously differentiable, strictly convex, and increasing.

In Holmstrém’s article utility is linear in money, so that py, = s;. Here [ assume that m, is
given by the function

mi(s) = —e™’, (2)

which has constant absolute risk aversion equal to 8; > 0 for agent ;. The particular form
of function (2) is not important except for its convenient parameterization and its differ-
entiability.

We seek sharing rules s;(x) = —w; such that we have budget balancing,

% si(xX)=x, for all x, (3)
i=1
and the noncooperative game with payoffs
mi(s{x(a)) —vda), - i=1,....8 (4)
has a Nash equilibrium «¢* that satisfies the following condition for Pareto optimality.’
Condition 1. There do not exist efforts 4 and sharing rules § such that: (a) for all i
Euds, &) = Euls;, at); and (b) for some agent j, Eui(§, ) > Ewl(s;, af).

It may seem unnecessary to write Condition 1 in terms of expected utility, since there
is no production uncertainty in the model, but doing so allows for the possibility of ran-
domized sharing rules.

Having assumed linearity of the utility functions, Holmstrém can simplify the payoffs

to
Si'(x(a)) - U,‘(ﬂj), = 1:! S By (43)

which validates the following proposition.

! Holmstrém uses the linearity of m;(s} in his model to state the Pareto-optimality condition more simply
than Condition. 1.
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Proposition 1 (Holmstrdm). There do not exist sharing rules {s,{x}} that satisfy (3} and yield
a* as a Nagh equilibrium in the noncooperative game with payoffs (4a).

I shall not repeat Holmstrém’s proof here, but the result is intuitive.® If one agent
shirks, he receives the full benefit of his diminished effort. The cost, on the other hand,
which is lower output, is shared by all the agents.

We shall see that when the payoffs are not (4a), but (4), Proposition 1 is no longer true.
When agents are risk averse, an efficient budget-balancing contract exists if the agents are
either sufficiently wealthy or sufficiently risk averse.

3. An efficient budget-batancing contract

B Under the following contract, a* is a Nash equilibrium for some values of the parameters
e and 4. If output is x{a*), let each agent { receive a share b, such that the budget is balanced
and Condition 1 is satisfied. If output is greater than x(a*), split the surplus evenly among
the agents after giving each agent [ the amount &;. If output is less than x(a*), choose one
agent j and let him receive —«;. Let each of the remaining (# — 1) agents / receive
b+ (b + w; — x(a*) + x)}/(n — 1). Depending on the unlucky agent j's wealth and whether
he is paid more than his marginal product in equilibrium, (&; + «; — x{@*} + x) is greater
or less than zero, and the lucky agents are paid more or less than they would have been
had no one shirked.

The sum of the rewards when output is below the Pareto-optimal level and agent j is
punished is

Esk=—wj+(2b.-)+<n—1>( s)

b+ w,—x(a*) + x) B
k=1 i#]

(n—1}
so that the contract is budget-balancing.

To a single agent i, who expects all of the other agents to choose the efficient effort
level, the contract appears as contract (6):

b+ (x— x{a*)/n if x=x(a*),
s(x)=4bi+tz with probability (n — 1)/n if x<x{a*), (6)
—w; with probability [ /# if x < x{a*),

where z;is a random variable taking the value {&; + @, — x{a*) + x}/(n — 1) with probability
1/in— l}yforj=1,...,n j# i The agent chooses either the Pareto-optimal effort level
and the reward b;, or some lower effort level and a gamble in which with probability 1/n
he receives —e; and with probability (n — 1)/# he receives not only his own 4; but also an
amount depending on the unlucky agent’s wealth and equilibrium share,

Choose the b/s in (6) so that 2 b, = x{(&*) and Condition 1 is satisfied when b; re-
places s;. d

Agent / does not want to exert an effort greater than a, given that the other agents are
exerting the efficient level. Under the contract just described, increasing his effort beyond
a raises every other agent’s utility, and if it raises i’s also, then 4* is not the Pareto-optimal
effort. We shall implicitly carry this result through the article, and in demonstrating that
an efficient Nash equilibrium is attained, we shall be concerned only about low effort levels.

With each agent / is associated a *“‘cheating effort” 4; € [0, a*] that represents the
deviation from equilibrium most tempting to him. Agent i’s cheating effort maximizes his
utility, given that the other agents choose a*; and the contract is replaced by the “deviation
lottery™ characterized in (6). If agent { selects the lowest effort possible when he decides to
cheat, then 4; = 0, but he might choose a higher cheating effort because with probability

2 Praposition 1 in. this article is Holmstrém’s Theorem 1 {1982, p. 339).
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(n — 1)/n his monetary compensation rises with effort and output. The cheating effort for
contract {(6) solves the problem,

max [(n ; D Emi(bi+2)+ }—t my(—aw}—vda)|. (7)

The objective function in (7) is strictly concave in effort, because we have assumed that
m? =0, v!> 0, and x" < 0. Given the concavity of prablem (7), classical optimization tells
us that the solution d4; exists and is unique.

To induce the agents to select the efficient effort levels, the utility difference ¥, between
the efforts ¥ and 4;, under the Nash assumption that the other agents choose a*;, must be
positive for each agent §:

¥,=[milhy) — via — (-’%‘-)Emf(bf +zy+ ’_‘Im,.(_m,.) - ui-@-)] >0. ®)

Propasition 2. If agents are risk averse, then provided that (a)} punishments can be great
enough {(w;, is large enough for every [) or (b) risk aversion is great enough (6; is large enough
for every i), an efficient budget-balancing contract exists.

Proof. We need to show that inequality (8) is true under either of the two conditions. We
start by holding the levels of risk aversion fixed and showing that if the «’s are large enough,
then a* is a Nash equilibrium under contract (6).

The first derivative of the utility difference ¥; with respect to the liability bound w, is
{by invoking the envelope theorem to disregard the change in 4;)

ay;, 1 ,
o > 0, (9
and the second derivative is
4y L
dw?:_;zmbo' (10)

Both expressions (9) and (10) are positive, because m} > 0 and mj < 0 for a concave
utility function. Hence, ¥;is increasing in w; and increasing at an increasing rate, so that it
does not converge to an asymptotic value, and if w; is chosen large enough, inequality (8)
is true. This applies to any agent i. For every 8, there is some level of «; that allows &f to
be the equilibrium effort level, which proves the first part of Proposition 2.

Even if the agents’ liabilities are limited, if they are sufficiently risk averse, an efficient
budget-balancing contract can exist. Rewriting expression (8) by using the full form of the
function m; from equation (2) and substituting for z; from contract (6), we obtain

Y= —et b viar) + 1 > o Hilhir1/in— |)[fa}‘+ﬂ=j_.r(a')+x(&j‘0'_j)])) + ;11( eaiw:} +v{d,). {11)
J#i
As 8; increases, the first and third terms on the right-hand side of (11) approach zero,
the second is unaffected, and the fifth term may change as 4; changes, but it is bounded by
v,{(0) and v,{a¥}. The fourth term of (11) increases exponentially with §;, which implies that
¥; can be made arbitrarily large. In particular, if 8, is large enough, then Y; is greater than
zero, and (6) is an efficient budget-balancing contract. Q.E.D.

Contract {6}, like Holmstrém's non-budget-balancing contract, does not necessarily
yield 4* as the unigue Nash equilibrium. An agent will not choose ¥ if he expects another
agent to choose an inefficiently low effort. Agent i’s response might be either also to choose
a low effort or to choose a high effort to compensate for the shirker and to avoid the random
punishment, and there might exist other Nash equilibria in which some efforts are either
insufficient or excessive. This does not mean that 4* is not a strong Nash equilibrium: a
player’s solitary deviation to any other effort level would lower his utility. Note also that
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contract (6) is just one of the many possible contracts that rely on risk aversion to obtain
the efficient equilibrium a*, and efficient budget-balancing contracts can differ in their
equilibrium outcomes as well as in the cut-of~equilibrium punishments.

O Genera! comments. Under the contract in the preceding subsection, if the outcome
shows that the wrong effort level was chosen, the agents are subjected to risk. Ex post,
shirking makes only one of the agents worse off, and all the others better off, unless the
shirking decreased output by more than the b, + w, lost by the unlucky agent. We may find
random punishments morally distressing, but they are similar to the punishments in tour-
nament contracts under uncertainty, a context in which most people feel that punlshments
conditioned on random events are fair.

If the efforts of the agents are observable, even if only with error, the observed efforts
can be used as the criteria for punishment. When the observation error has a high variance,
the wrong agent would often be punished if output were low, but that does not detract from
the contract’s efficiency. Low observed output is merely an excuse to punish, although the
shirker would have at least a slightly greater probability than the other agents of being
punished. Depending on the variance of the observation error, the punishment is more or
less random. This article describes a model] in which the variance of the observation error
is infinite, and hence the punishment seems completely capricious.

If efforts are observable with error, but we continue to assume that there is no production
uncertainty, then no punishment occurs in equilibrium. Although the observed individual
efforts might be used to allocate punishment, the only punishment trigger needed to attain
efficiency is the team’s output. In equilibrium output is x{a*), and if at the same time the
ohserved efforts are low, it is clear they must have been observed with error.

If, however, individual efforts are observable with error, the first best may sometimes
be achieved with budget balancing, even if the agents are risk neutral. The exact form of
the contract depends on the specification of the observation error, but one possibility is to
give the entire output to the agent whose ohserved effort is closest to his efficient effort,
Such a plan resembles more a tournament contract than a team contract, and it relies
heavily on risk neutrality since the equilibrium compensation (not just the out-of-equilibrium
compensation}) varies widely.

I mentioned earlier that one reason for dissatisfaction with non-budget-balancing con-
tracts is the perfectness problem of having to discard output if it is insufficient. One might
wonder whether the random punishment contract addresses the perfectness problem any
better. Both contracts rely on lowering the utility of all the agents after certain outcomes
are observed. The random punishment contract differs in that some agents may be better
oft ex post, after the punishment actually occurs, and they would vote against any recon-
tracting. Between observing the output and choosing the agent to be punished, however, all
agents could raise their utility by abandoning the punishment scheme and reverting to a
nonstochastic sharing rule. The contract must somehow prevent this.

One way to prevent recontracting is to allocate the punishment immediately and au-
tomatically after low output is observed and before recontracting can occur.” QOnce a victim
has been chosen, the other agents block any recontracting. In some situations there is a
time lag between the date of choosing effort and the date of observing output. Committing
to punishment is then simple: the lottery for allocating possible future punishments is held
between the two dates. Any agent who objects to the lottery must have shirked, since in
equilibrium the lottery is harmless as its punishment is never imposed.

Holmstrom has suggested that if the team adds a manager, whose sole function is to
serve as the residual claimant, the perfectness problem for the non-budget-balancing contract

? One way to allocate shares, for example, would be to adapt a plan for allocating sealed-bid orders suggested,
but not adopted, during the “Flectric Conspiracy.” This plan was to use stock market results published in the Walf
Street Journal to allocate bids randomly, an interesting application of the theory of efficient markets (Sultan, 1974,
p. 47).
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can be solved. Qutput below the efficient level triggers a large payment to the manager, who
therefore has the Incentive to oppose any recontracting. This idea is particularly interesting
because it depicts the manager not as a principal, but as an agent of the agents.* He is truly
a “public servant.” But this introduces the possibility of new agency problems: the manager
has an interest in seeing that the output is below the efficient level so that the punishment
is triggered. Randomization schemes are free from this danger, despite the drawback of
their greater complexity.

4. Scapegoats versus massacres

B Under the randomizing contract described above, one agent is chosen to be the ““scape-
goat” when output is low, and the others benefit at his expense. Another extreme in the
¢class of randomizing contracts is the “massacre™ contract in which all of the agents are
punished when output is low except for one, randomly chosen, who receives the entire
output. We shall see that the massacre is a better contract in the sense that it is feasible for
a strictly larger set of liability bounds and risk-aversion parameters. Since it should be clear
now that heterogeneity of the agents is unimportant except for the amount of notation, we
shall simplify the model of Sections 2 and 3 by assuming that the agents have identical
utility functions and liability bounds.

In the model with identical agents the scapegoat contract appears to the individual
agent as

x/n if  x=x(a%),
si{x}=4 (x+w)(n—1) with probability (rz — 1)}/n if x < x{a*), (12)
—w with probability 1/#n if x < x(a@*).

The effort-level vector a* is a Nash equilibrium under the scapegoat contract if and only if
the utility of choosing af is greater than that of choosing a lower effort level; that is, if

[m(X(j*}) (*)] [(n;l) (xsjid)+ m(— w)_u(as)]>0 (13)

where 4, is the effort level chosen under the scapegoat contract by the single cheating agent
and x; = x(4,, a%).
The massacre contract appears to the individual agent as

xin if x=x(a*),
s{x)=4 —w with probability (n — 1)/n if x<x(a"), (14)
x+{n—Da with probability 1 /# if x < x{a*).

The vector ¢* is a Nash equilibrium under the massacre contract if and only if the utility
of choosing a¥ is greater than that of choosing a lower effort level; that is, if

[m(x(a*)) (*)] [(n_l)m(—w)+1m<xm+[n—Ilw)—v(a‘m) >0, (3
n n n

where d,, is the effort level chosen under the scapegoat contract by the single cheating agent
and x,, = x{d,,, a*)). The existence and unigueness of 4,, follow from the concavity of the
deviation lottery {14} by the same argument made for the existence of 4, in Section 3.

We shall consider the class of contracts that treat identical agents identically as do the
scapegoat and massacre contracts. Otherwise there is some agent whose change in expected
utility from deviating is highest, and he is the only relevant agent for determining whether

* Anyone interested in the problem of one agent serving several principals should see Bernheim and Whin-
ston. (1986).
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the first best can be supported. That agent’s compensation in equilibrium should be increased
to make his loss from deviation greater, or his punishment after deviation should be increased
while lightening that of the other agents. Carried to the extreme, this results in a symmetric
contract, which gives each agent the same compensation in equilibrium and the same ex-
pected disutility from deviation.

We shall now prove that the massacre contract attains efficiency for a larger set of
parameters than the scapegoat contract or any other budget-balancing contract.

Proposition 3. If any budget-balancing contract can achieve a Pareto optimum, the massacre
contract can.®

Proof. Under a Pareto-optimal contract, no agent has the incentive to choose an excessive
effort level, so that output is no greater than the efficient level x*. Each agent faces a choice
between the desired effort level and a compensation of x*/n, or the cheating effort level and
a deviation lottery with an expected value of some smaller x/# and a distribution that
depends on the form of the contract. The expected values of different lotteries are different
because the cheating efforts are different, but that will not be relevant to this proof.

The advantage of the massacre contract is that its deviation lottery is the riskiest of
any contract. Let us suppose for the moment that the cheating efforts, and thus the expected
values, are the same for the massacre contract’s deviation lottery and for some arbitrary
contract k's deviation lottery. We shall see that if the expected values are the same, the
massacre lottery can be obtained from contract &'s deviation lottery by the addition of a
series of mean-preserving spreads of the kind formalized by Rothschild and Stiglitz (1970).
The massacre contract creates the two-point deviation lottery that places the highest possible
probability, (# — 1)/», on the lowest possible payoff, —w, and the probability of 1/n on the
highest possible payoff, (x + (# — [)w). Any other lottery puts smaller probability on —«
and positive probability on payoffs less than (x + (r — L)). If the means of the lotteries
are equal, the massacre lottery is riskier than lottery k%, because it takes probability mass
away from the pavofls between —w and (x + (# — 1)w) and puts it on those extreme points.

More precisely, if contract k has a discrete probability function for its deviation lottery,
then we can obtain the massacre lottery from &’s deviation lottery by a series of mean-
preserving spreads of the form

a=0 for m=—uw,
—ax0 for m=—wtd,
fimy=+ —B8=<0 for m=x+(n—Iw—t, (16)
g=0 for m=x+{n—1a,
0 otherwise,
where the values of 4, ¢, a, and # are chosen so that
—w=<—wtdsxt+n—Dw—t=x+n—ljw (17

and

od = Bt

If contract ks deviation lottery has a continuous density, the notation of (16} is inappropriate,
but it can easily be adapted to find the desired mean-preserving spreads.

Rothschild and Stiglitz (1970) have shown that the expected utility of a risk-averse
agent is lower with a lottery that is riskier in the sense of being obtained from other lotteries
by a series of mean-preserving spreads. Since any deviation from a* triggers the deviation
lottery specified by the contract in force, an agent’s expected utility is lower when a given

31 would like to thank Paul Milgrom for suggesting that I broaden Proposition 3 to its present form.,
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deviation occurs under a massacre contract than under any other contract. An agent who
deviates to 4,, will have lower utility under the massacre contract than under any other
contract k.

Once we relax our temporary supposition that the cheating efforts are equal, contract
k is even less able to deter deviation because the agent will reoptimize his cheating effort
from 4, to a cheating effort preferred under contract k, and this raises his utility when he
deviates under that contract. Although the massacre contract may not always be able to
support a Pareto optimum by making the cost (the shift to a lottery) greater than the benefit
(the reduced effort), it makes the difference as great as possible, and hence will support the
Pareto optimum whenever any ather feasible contract can. Q.E.D.

The intuition behind Proposition 3 is that the massacre contract puts greater risk on
an agent if he chooses low effort, and less risk-averse agents can be deterred by this larger
amount of risk. The massacre contract deters shirking in types of agents who would shirk
under the scapegoat contract, and hence we might expect to sece the massacre contract
employed more often. The advantage of the massacre contract, however, also points up a
major weakness of the madel: the absence of production uncertainty.® If output were some-
times low, even if effort were high, the massacre contract would trigger greater accidental
punishments than the scapegoat contract, and its superiority might well disappear. Mareover,
I have said nothing about the output levels in the inefficient Nash equilibria that possibly
exist even under efficient contracts, and the massacre contract may do badly in those inef-
ficient equilibria.

8. Concluding remarks

@ We¢ have seen that for the multiagent team, it is easier to find a first-best contract if
agents are risk averse than if they are risk neutral. Although no budget-balancing first-best
contract exists when agents are risk neutral, when they are risk averse such a contract does
exist. The contract is similar to the non-budget-balancing contract that Holmstrém suggests
for risk-neutral agents, because team output less than the efficient level triggers a punishment,
but with risk-averse agents the punishment can take the form of a lottery rather than of the
destruction of the output. If agents are sufficiently risk averse, ar the lottery is sufficiently
risky, each agent is unwilling to deviate from the efficient effort level, given that he believes
his fellow agents are choosing the efficient level, The deviation lottery can take a number
of forms, including the scapegoat lottery, in which one agent is punished and the others
take his share, and the massacre lottery, in which one agent is rewarded by being granted
the shares of all the others. Under saome parameter values any of the deviation lotteries
performs equally well, but the massacre lottery is able to attain the first best for less risk-
averse agents or more tightly bounded punishments.
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