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Abstract

We consider the learning curve in an industry with free entry and exit, and price-

taking �rms. A unique equilibrium exists if the �xed cost is positive. Although

equilibrium pro�ts are zero, mature �rms earn rents on their learning, and, if

costs are convex, no �rm can pro�tably enter after the date the industry begins.

Under some cost and demand conditions, however, �rms may have to exit the

market despite their experience gained earlier. Furthermore, identical �rms facing

the same prices may produce di�erent quantities. The market outcome is always

socially e�cient, even if it dictates that �rms exit after learning. Finally, actual

and optimal industry concentration does not always increase in the intensity of

learning.
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I. Introduction

Economists have long been aware that a �rm's cost curve for producing

a given item may shift down over time as learning occurs. The plot of the

cost level against cumulative output is known as the learning curve or ex-

perience curve. Our subject here is learning in an industry of price-taking

�rms with free entry and exit{ an arbitrarily large measure of �rms with

identical technologies producing homogeneous good. Each �rm's cost curve

shifts down with its own accumulated experience in production, measured

by its cumulative output.

The assumption of a perfectly competitivemarket structure distinguishes

our model from much of the existing literature on learning-by-doing, which

has focussed on monopoly and oligopoly.1 If the average cost at any point of

time is constant in current output, then learning introduces an intertemporal

economy of scale that creates a natural monopoly. This need not be the case,

however, if the technology displays su�cient decreasing returns. In that case,

learning does not lead to a natural monopoly and is, in fact, compatible with

perfect competition. Learning-by-doing is distinct from increasing returns to

scale in this sense.2

Our model is not part of that branch of the learning literature in which

an individual �rm's experience spills over to other �rms in the industry3

While the market structure in these models is competitive, the presence of

learning spillovers gives rise to decreasing-cost industries as distinct from

decreasing-cost �rms. We exclude such spillovers, and consider only �rm-

1See Spence (1981), Clarke, Darrough & Heineke (1982), Fudenberg & Tirole (1983),
Smiley & Ravid (1983), Bhattacharya (1984), Dasgupta & Stiglitz (1988), Jovanovic &
Lach (1989), Mookherjee & Ray (1991), and Cabral & Riordan (1991).

2See Mookherjee & Ray (1992) for a discussion of other di�erences between increasing
returns to scale and learning-by-doing.

3The learning spillover literature includes Arrow (1962), Ghemawat & Spence (1985),
Romer (1986), Lucas (1988), and Stokey (1986, 1988).
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speci�c learning-by-doing.

Our point of departure is Fudenberg & Tirole (1983), which consid-

ers learning-by-doing in a competitive industry with constant instantaneous

marginal cost. In their setting, learning-by-doing is incompatiblewith perfect

competition, but we will come to a di�erent conclusion, because we analyze

an industry with the usual textbook assumption of increasing marginal cost,

not constant marginal cost. We will show that in a two-period model with a

�xed cost, a unique perfectly competitive equilibrium exists.

If we make the stronger assumption that costs are convex, then no �rm

can pro�tably enter after the date at which the industry begins. This reects

the entry-deterring aspect of learning-by-doing; however, in our model entry

is not prevented by any strategic action of incumbent �rms, but is a direct

consequence of dynamic competitive equilibrium with atomistic �rms. The

unique equilibrium takes one of two forms, depending on the demand and

cost parameters of the economic environment.

In the �rst type of environment, all �rms that enter remain in the in-

dustry permanently. The equilibrium discounted stream of pro�ts is zero,

but mature �rms earn quasi-rents on their learning, compensating for their

losses in the �rst period.

In the second type of environment, some �rms exit, because the mature

industry cannot sustain the original number of �rms with non-negative prof-

its. Relatively inelastic demand coupled with a strong learning e�ect gives

rise to this outcome. Initially identical �rms, facing the same prices, produce

di�erent quantities of the homogeneous good in the �rst period, and some of

them will exit in the second period. Firms which exit produce less than the

staying �rms in the �rst period.

This is a new explanation for the endogenous di�erentiation of ex ante
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identical �rms and shakeout of small �rms, which does not rely on either

aggregate or �rm-speci�c uncertainty.

There is widespread empirical support for shakeout (e.g., Gort and Klep-

per [1982]) and for higher exit rates among smaller �rms (Dunne, Roberts

& Samuelson [1989], Davis & Haltiwanger [1992]). The existing literature

has explained shakeout as the process of \market selection" in the presence

of �rm-level uncertainty. In this explanation, �rms that are identical ex

ante become heterogeneous over time through idiosyncratic shocks, uncer-

tain learning, innovation and di�usion, and so forth, which lead to exit of

the ex post ine�cient �rms.4 In our model, shakeout is a direct result of

endogenous technical change at the �rm level, through deterministic learn-

ing and in the presence of stationary market demand. All �rms have perfect

foresight at their point of entry, and some enter fully intending to exit later.

The equilibrium outcome is socially e�cient whether it is characterized

by exit or not. Even if exit occurs in equilibrium, a social planner would

choose the same number of �rms of each type, the same quantity produced

by each �rm in each period, and the same prices as in the competitive equilib-

rium. Thus, the presence of learning-by-doing implies neither the usefulness

of a government industrial policy to ensure optimal learning, nor the use-

ful e�ects of large, innovative monopolies so often attributed to Schumpeter

(1950). Our model will uncover a pitfall that may exist for antitrust and

regulatory authorities. Although all �rms in our model are price-takers, one

possible feature of equilibrium is that prices are sometimes below marginal

cost, sometimes above marginal cost, that pro�ts rise over time, small �rms

drop out of the market and large �rms expand even further, and that the

large �rms increase their pro�ts from negative to positive levels without any

new entry occuring. Government intervention is not only unnecessary, but

4See, in a large literature, Lippman & Rumelt (1982), Jovanovic (1982), Jovanovic &
Lach (1989), Hopenhayn (1992a,b), 1993), and Jovanovic & MacDonald (1994a, b).
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possibly harmful.

Section II describes the model and discusses its assumptions. Section III

presents theorems on existence and e�ciency of the competitive equilibrium,

and discusses the pattern of entry and exit. Section IV characterizes the

equilibrium under the assumption of convex costs. Section V contains a

numerical example and looks into special cases where (a) learning reduces

only the �xed cost, not the variable cost of production, and (b) learning

reduces just the marginal cost, not the �xed cost. Section VI concludes.

II. The Model

An arbitrarily large measure of initially identical �rms compete to enter

a homogeneous-good industry. The measure of �rms actually operating is

determined by free entry and exit. Each �rm is a price taker, since it is

in�nitesimal compared to the industry.5 Firms are indexed by i. Time is

discrete, and the market lasts for two periods. Firm i produces output qt(i)

in period t = 1; 2.

Each �rm i faces the same current total cost at time t as a function of

its current output qt(i) and its experience xt(i):

C(qt(i); xt(i));

where xt(i) is �rm i's cumulative output before time t, so that x1(i) = 0 and

x2(i) = q1(i). Let

�(q1; q2) = C(q1; 0) + �C(q2; q1);

where � 2 [0; 1] is the discount factor, so � represents a �rm's discounted

sum of production costs across the two periods.

5Other models of learning in which �rms are price takers include Fudenberg & Tirole
(1983), Boldrin & Scheinkman (1988), and Majd & Pindyck (1989).
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If amount n of �rms are active, industry output is Qt =
R
n

0 qt(i)di. The

market demand function, D(p), is the same in both periods and is separable

across time. Let P (Q) be the inverse demand function. De�ne pm as the

minimum average cost at zero experience.

pm =
min
q�0 [C(q; 0)=q];

and let qm be the corresponding minimum e�cient scale, so

qm 2
argmin

q�0 [C(q; 0)=q]

We impose the following six assumptions on costs and demand:

(A1) C(q; x) is continuously di�erentiable on R2
+.

(A2) Cq(q; x) > 0 for q > 0 and x � 0; Cx(q; x) � 0 for all (q; x) 2 R2
+ and

Cx(q; x) < 0 for all (q; x) 2 (0; K]� [0; K], where K is de�ned in (A5).

(A3) For any q > 0 and x � 0; C(q; x) > 0; Also, C(0; 0) > 0.

(A4) P is continuous and strictly decreasing; P (Q)! 0 as Q! +1; P (Q)

is integrable on any closed interval of R+.

(A5) [Eventual Strong Decreasing Returns] There exists K > 0 such that

the following holds: if either q1 > K or q2 > K (or both), then there

exist � and � 2 [0; 1] such that

�(q1; q2) > �(�q1; �q2) + �((1� �)q1; (1� �)q2):

(A6) P (0) > pm.

Assumption (A1) guarantees the continuity of the marginal cost and

marginal bene�t functions.
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Assumption (A2) says that the marginal cost is always positive, that

greater experience never increases the total cost, and that greater experience

strictly reduces the total cost of producing output in any period.

The total production cost is nonincreasing in the amount of accumulated

experience. Figure 1 shows one cost function that satis�es the assumptions|

the cost function which will be used in Example 2 later in the article. Note

the increasing marginal costs for any level of learning, and the decreasing

returns to learning for any level of output.
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Figure 1: A Firm's Total Cost as a Function of Output and

Experience

Assumption (A3) says that a �rm with no experience incurs a �xed cost

of production, a cost which must be incurred even if output is zero.

Assumption (A4) is a standard assumption on the demand curve, and

allows the social planner's problem to be well-de�ned.
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Assumption (A5) says that if output produced by a �rm is too large

in any period , it is possible to have two �rms produce the same output

vector at a lower total cost. This prevents the industry from being a natural

monopoly.6

Assumption (A6) places restrictions on the demand and cost functions

jointly to ensure existence of a nondegenerate equilibrium. If P (0) were

allowed to take any value, no matter how small, then the equilibrium might

be at zero output for every �rm.

Only the six assumptions listed above are needed for our main results,

but with a little more structure we can strengthen the results further. We

will do that in Section IV by adding the following assumption, which is not

implied by (A1)-(A6):

(A7) [Convex Costs] C is convex; for all x � 0, C(q; x) is strictly convex in

q, and for all q � 0, if x1 > x2, then Cq(q; x1) � Cq(q; x2).

Assumption (A7) requires that the total cost function be convex in x

and q, and that marginal cost be non-increasing in experience. For any

level of experience, the current marginal cost is strictly increasing in current

output. Assumption (A7) is su�cient to ensure strict convexity of � on R2
+.

Part of this assumption is that Cx is nondecreasing in x; that is, there are

decreasing returns to learning at any given level of current output. Note

6If one thinks in terms of multiproduct �rms, (A5) requires that the joint cost of
production is no longer subadditive if the �rm produces an excessive amount of the two
goods (see Panzar [1989]). Note, incidentally, that the crucial di�erence between a learning
model and a static model of joint production is time consistency: in our learning model
we will require that second-period pro�ts be non-negative (or no �rms would operate in
the second period), whereas in static joint production, pro�ts on either one of the goods
can be negative.
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that this assumption allows for a positive �xed cost, incurred even when no

output is produced.

Assumption (A7) is not necessary for existence, uniqueness, and opti-

mality of equilibrium prices and so will not be used for Propositions 1 and

2.

Our speci�cation of the cost function allows a �rm to accumulate experi-

ence on both its �xed and marginal costs. Each �rm maximizes its discounted

stream of pro�ts, taking prices as given. An active �rm exits the industry

in the second period if its pro�ts from that time on would be negative. A

�rm with no experience enters the industry in the second period only if it

can make positive pro�ts in that period.

III. Properties of the Competitive Equilibrium

Let pt be the market price in period t. Denote �rms that stay in the

market for both periods as staying or S-type �rms, with output qt and

ow pro�t �t in period t. Denote �rms that exit at the end of the �rst

period as exiting or E-type �rms, with output qE and pro�t �E . Denote

�rms that enter the industry at the beginning of the second period as late-

entering or L-type �rms, with output qL and pro�t �L in the second

period (not discounted back to the �rst period). Finally, let nS; nE ; and nL

be the measures of active �rms of each type.

A �rm staying in the industry for both periods maximizes its discounted

sum of pro�ts. The �rst order conditions for the �rm's pro�t maximization

problem are:

p1 = Cq(q1; 0) + �Cx(q2; q1) (1)

p2 = Cq(q2; q1): (2)
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Equation (1) says that as long as learning still occurs, a staying �rm will

choose output in the �rst period so that its marginal cost is greater than the

market price, since Cx(q2; q1) is negative. In other words, a staying �rm over-

produces in the �rst period in order to reduce its cost in the second period.

As a result, a staying �rm makes losses initially in equilibrium, which are

counterbalanced by positive gains later. Equation (2) is the standard \price

equals marginal cost" condition. If the market ends in the second period, any

further learning is of no use to a staying �rm, so a �rm maximizing pro�ts

from that time on chooses output to equate price to its marginal cost.

Marginal cost in the standard model is here replaced by what we will

call the Net Marginal Cost: the increase in lifetime discounted costs when

current output increases, which for the �rst period is Cq(q1; 0) + �Cx(q2; q1):

Note that the net marginal cost comes arbitrarily close to the marginal cost

of a non-experienced �rm for su�ciently large q1, because if a �rm produces

too much today, its marginal bene�t from learning becomes almost zero.

An equilibrium should be characterized by rational price-taking behavior

on the part of �rms, but rationality and price taking do not necessarily result

in identical behavior by all �rms. Let �S(p1; p2) be the pro�t function of S-

type �rms. Then,

�S(p1; p2) =
Maximum

fq1; q2 � 0g [p1q1 + �p2q2 �C(q1; 0)� �C(q2; q1)]: (3)

Similarly, let �E(p1; p2) and �L(p1; p2) denote the pro�t functions of E and

L-type �rms, so

�E(p1; p2) =
Maximum

fq � 0g [p1q �C(q; 0)] (4)

and

�L(p1; p2) =
Maximum

fq � 0g [p2q �C(q; 0)]: (5)

For types k = S;E; L, let Jk(p1; p2) denote the sets of solutions to the maxi-

mization problems in equations (3), (4), and (4).
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We de�ne equilibrium as follows.

De�nition: An equilibrium is de�ned by:

(a) Measures (nS; nE ; nL) of type S, E and L �rms who enter the

market.

(b) Functions q1(i) and q2(i), where qt : [0; nS ] ! R+; j =

1; 2; qt(:) integrable (with respect to Lebesgue measure); qt(i) is the

output produced by �rm i of S-type in period t.

(c) Functions qE : [0; nE ]! R+ and qL : [0; nL]! R+, integrable,

where qE(i) and qL(j) are the output produced by the i-th E and j-th

L type �rms in their periods in the market.

(d) Prices p1 � 0 and p2 � 0.

The variables de�ned in (a) - (d) must satisfy the following conditions

to constitute an equilibrium:

(i)p1 = P (Q1+QE); Q1 =
R
nS

0 q1(i)di;QE =
R
nE

0 qE(i)di (Markets

clear in the �rst period.)

(ii)p2 = P (Q2+QL); Q2 =
R
nS

0 q2(i)di;QL =
R
nL

0 qL(i)di (Markets

clear in the second period.)

(iii) If nS > 0; (q1(i); q2(i)) 2 JS(p1; p2); if nE > 0, then qE(i) 2

JE(p1; p2); if nL > 0, then qL(i) 2 JL(p1; p2) (Active �rms of all types

maximize pro�t.)

(iv) For k = S;E;L,

�k(p1; p2) = 0 if nk > 0

� 0 if nk = 0

(Every active �rm earns zero total pro�t over its period of stay, and

further entry is not strictly pro�table.)

In equilibrium, no �rm can make positive pro�t by behaving like some

other type. No S-type �rm can do better by exiting at the end of period 1 nor

can an E-type �rm make positive pro�t by staying on till period 2 (even if

there are no S-type �rms in the market) and so forth. This ensures sequential

rationality on the part of the E-type and S-type �rms, who might otherwise

�nd it advantageous to change their second-period behavior halfway through

the evolution of the industry.
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In an equilibrium with exit, an exiting �rm makes zero pro�ts in the

�rst period, and in an equilibrium with late entry, a late entrant makes zero

pro�ts in the second period. A �rm with no experience behaving optimally

during the single period in which it remains in the market makes zero pro�ts

if and only if the market price equals its minimum average cost. In any

equilibrium, no �rm produces output in the range of strongly diminishing

returns.

These requirements for rational and competitive behavior on the part of

the �rms imply a number of restrictions on equilibrium outcomes, which are

summarized in Proposition 1.

PROPOSITION 1. 1. In any equilibrium, the price in each period is at most

the minimum average cost for a �rm with zero experience. 2. A strictly positive

measure of staying �rms produce in both periods. 3. All staying �rms earn strictly

negative pro�ts in the �rst period and strictly positive pro�ts in the second period.

4. If there is exit in the equilibrium, the �rst-period price exactly equals the min-

imum average cost, and all exiting �rms earn zero pro�ts in the �rst period. 5.

If there exist late-entering �rms, the second-period price is the minimum average

cost for a �rm with zero experience. 6. The output of every active �rm in any

time period is bounded above by K. 7. Late entry and exit cannot simultaneously

occur in a single equilibrium.

Proof. The proof of Proposition 1 is accomplished by showing the following:

1. pj � pm < P (0); j = 1; 2.

2. nS > 0; Q1 > 0 and Q2 > 0.

3. For all i 2 [0; nS ]; [p1q1(i)�C(q1(i); 0)] < 0 and [p2q2(i)�C(q2(i); q1(i))] > 0.

4. If nE > 0, then QE > 0; p1 = pm and for i 2 [0; nE ]; qE (i) 2 fq : [C(q; 0)=q] = pmg.

5. If nL > 0, then QL > 0; p2 = pm and for i 2 [0; nL]; qL(i) 2 fq : [C(q; 0)=q] = pmg.

6. q1; q2; qE ; qL � K.

7. Either nE > 0 or nL > 0, but not both.

Recall that pm = Minf[C(q; 0)=q] : q � 0g. Conditions (iii) and (iv) imply that if in
an equilibrium we have nE > 0, then p1 = pm and qE(i) 2 fq : C(q; 0)=q = pmg. Similarly,
if nL > 0 then p2 = pm and qL(i) 2 fq : C(q; 0)=q = pmg.
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Condition (iv) also implies that pi � pm; i = 1; 2. From assumption (A6), we have
P (0) > pm and so in any equilibrium it must be true that pi < P (0). It follows that
Q1 +QE = D(p1) > 0 and Q2 +QL = D(p2) > 0.

To prove part (6), it is su�cient to consider the case of the staying �rms. Suppose
qt > K for some t. In equilibrium, a �rm's lifetime pro�t is zero, so

0 = p1q1 + �p2q2 � �(q1; q2) < p1q1 + p2q2 � �(�q1; �q2)� �((1� �)q1; (1� �)q2); (6)

for some �; � in [0; 1], using assumption (A5). The rightmost expression, can be rewritten
as

[p1�q1 + p2�q2��(�q1; �q2)]+ [p1(1��)q1+ �p2(1��)q2��((1��)q1; (1��)q2)]; (7)

which is either zero or negative. In combination with the strong inequality in (6), this
yields a contradiction, so it must be false that qt > K for some t.

Suppose nE > 0 and nL > 0. Then, p1 = p2 = pm. This violates condition (iv)
of equilibrium, since by part (6) of Proposition 1, Cx < 0, and facing those prices a �rm
could produce qm in each period and earn �1 = 0 and �2 > 0. Thus, nE > 0 and nL > 0
is impossible.

Now, suppose there is an equilibrium where nS = 0. Then, since D(pt) > 0; t = 1; 2
in equilibrium implies that nE > 0; nL > 0, a contradiction. So, in equilibrium, we must
have nS > 0. This, in turn, can be used to show that Q1 > 0 and Q2 > 0. Suppose
Q1 = Q2 = 0. Then, QE > 0; QL > 0, i.e. nE > 0; nL > 0, a contradiction. Suppose,
Q1 = 0; Q2 > 0. Then, nE > 0, i.e. p1 = pm. Now if some S-type �rm produces
q1 = 0, it earns a loss of C(0; 0). On the other hand if it produces q1 = qm > 0 (where
C(qm; 0)=qm = pm ), then it has a lower cost function in period 2 while the current loss
is zero. So producing q1 = 0 cannot be pro�t maximizing. Thus, q1(i) > 0 for almost all
i 2 [0; nS ], that is, Q1 > 0, a contradiction. Similarly, Q2 = 0; Q1 > 0 is ruled out.

From the �rst order conditions of pro�t maximization for S-type �rms it is clear that
p1 < Cq(q1; 0) so that q1 does not maximize period 1 pro�t at price p1. Coupled with the
fact that p1 < pm, this implies that for all i 2 [0; nS ], [p1q1(i) � C(q1(i); 0)] < 0, so that
(iv) implies [p2q2(i)�C(q2(i); q1(i))] > 0.

Conditions (iii) and (iv) imply that if nE > 0, then for i 2 [0; nE ]; qE(i) > 0

and [C(qE(i); 0)=qE(i)] = pm. Similarly, if nL > 0 then for i 2 [0; nL]; qL(i) > 0 and

[C(qL(i); 0)=qL(i)] = pm. //

In equilibrium, initially identical �rms may behave very di�erently, some

staying, some exiting, and some entering late. A socially optimal allocation

would solve the following problem:
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The Social Planner's Problem (SPP*):

Choose

(a) (nS; nE ; nL): the measures of type S, E, and L �rms who enter;

(b) Functions q1(i) and q2(i), where qt : [0; nS ] ! R+; t = 1; 2,

and qt(:) is integrable with respect to Lebesque measure, qt(i) being

the output produced by staying �rm i in period t;

(c) Integrable functions qE : [0; nE ]! R+ and qL : [0; nL]! R+;

where qE(i) and qL(j) are the output produced by the i-th E and j-th

L type �rms, respectively, in their periods of operation;

so as to maximizeR
Y1

0 P (q)dq +
R
Y2

0 �P (q)dq �
R
nS

0 [C(q1(i); 0) + �C(q2(i); q1(i))]di

�
R
nE

0 [C(qE(i); 0)]di� �
R
nL

0 [C(qL(i); 0)]di

where Y1 = Q1 +QE and Y2 = Q2 +QL, and

Q1 =

Z
nS

0

q1(i)di; Q2 =

Z
nS

0

q2(i)di; QE =

Z
nE

0

qE(i)di; QL =

Z
nL

0

qL(i)di:

The social planner's problem includes choosing the entry and exit of

�rms as well as their output. The marginal social bene�t of output in each

period is exactly the demand price for that output. Maximization of social

surplus implies that the net marginal cost of each �rm is equated to the

demand price for total output produced. Therefore, if the market price is

equal to the demand price corresponding to the socially optimal total output

in each period, then each active �rmmaximizes pro�t and the market clears in

every period. The complementary slackness condition for the social planner's

problem with respect to choice of entry of �rms implies that every entering

�rm gets zero total pro�t and that no �rm can make a strictly positive pro�t

by entering the market. Thus, the solution to the social planner's problem

corresponds to a competitive market outcome.

Under assumptions (A1) to (A6), not only does a competitive equilib-

rium exist, but it is unique in prices and it is socially optimal.

PROPOSITION 2.Under assumptions (A1) to (A6), an equilibrium ex-

ists. It is unique in prices and aggregate output, and it is socially optimal.
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One way to prove Proposition 2 would be by following the arguments in

Hopenhayn (1991), which analyzes a more general model of dynamic compet-

itive equilibrium with stochastic shocks. We used a direct proof, an outline

of which is contained in the Appendix, in line with the approach of Jovanovic

(1982).

Before closing this section of the paper, one further explanation may be

useful. Our assumption that the �xed cost of production is strictly positive

is required to ensure the existence of a �nite competitive equilibrium. If

the �xed cost of production is zero, (i.e. C(0; x) = 0 for all x), and if

costs are convex, then a �rm accumulates experience only in order to reduce

its marginal cost.7 A well known result from standard price theory is that

a competitive industry with increasing marginal costs, free entry, and no

learning possibilities has no equilibrium if the �xed cost of production is

zero. Loosely speaking, an in�nite number of �rms operate in the market,

each producing an in�nitesimal amount of output. This holds true even if

�rms are able to reduce their costs by accumulating experience.8

IV. Further Results: The Case of Convex Costs

Let us now introduce assumption (A7), convexity of the cost function,

noting that (A7) does not necessarily imply (A5), which must still be re-

tained, and that (A7) also requires that the marginal cost of production be

7A referee has pointed out that the limiting behavior of the competitive equilibrium
in our model as the �xed cost converges to zero does not necessarily coincide with the
market outcome when �xed cost is zero and learning is absent. Learning persists, as does
its e�ect on prices and output, even as the �xed cost is reduced to zero.

8Another way to understand this is through the social optimality of competitive equi-
librium, an implication of which is that the competitive market structure and allocation of
output minimizes the social cost of production. If the �rm-speci�c cost function is convex
and the �xed cost is zero, social cost is minimized by having an inde�nitely large number
of �rms, each producing in�nitesimal output each period.
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weakly decreasing with learning.

Earlier we saw that the equilibrium is unique in prices. When costs are

convex, it is also unique in output and the number of �rms.

PROPOSITION 3.Under assumptions (A1)-(A7), the equilibrium is unique

in prices, individual �rms' outputs in each period, and the number of �rms.

Proof: See the Appendix.

Convexity also allows us to be more speci�c about the properties of the

equilibrium, as shown in the next propositions. In an industry without the

possibility of learning, identical �rms produce the same output in equilib-

rium if the marginal cost curve is upward sloping. When the opportunity

for learning is added, identical �rms could behave di�erently in the same

equilibrium.

PROPOSITION 4. Under assumptions (A1)-(A7), the following is true

in equilibrium:

(a) Each of the staying �rms behaves identically.

(b) If there is a positive measure of exiting �rms, they produce at the zero-

experience minimum e�cient scale, which is less than the output pro-

duced by staying �rms in period 1.

(c) There exist no late-entering �rms.

Proof: See the Appendix.

Proposition 4 allows the unique equilibrium to take one of two distinct

forms, depending on the cost and demand parameters: (i) with exit at the

end of the �rst period, or (ii) without exit.
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In an equilibrium with exit, some �rms, after producing in the �rst

period, decide to leave the industry. Thus, two types of �rms coexist, those

staying for both periods and those exiting at the end of the �rst period.

Furthermore, �rms that are identical ex ante nonetheless produce di�erent

outputs even in the �rst period. For a given price in period 1, exiting �rms

will produce less than staying �rms, because overproducing to reduce future

costs has no value for a �rm that plans to exit at the end of the �rst period.

In an equilibrium without exit, all �rms entering in the �rst period stay

in the industry both periods (i.e. all are staying �rms). Firms make losses

today in order to accumulate experience, while they earn pro�ts tomorrow

on their maturity. To break even, the present value of the future pro�ts must

equal the losses today.

It is perhaps surprising that assumption (A7) is needed to ensure that

there exist no late-entering �rms in equilibrium. After all, a late-entering

�rm must compete with staying �rms that have lower costs, and Proposition

1 showed that if late-entering �rms do exist, it must be the case that the

price is pm in the second period, so p2 = pm and the experienced �rms are

charging no more than than inexperienced �rms. Example 1, in which costs

are nonconvex, shows what can happen.

In the preceding section, Proposition 2 stated that the competitive equi-

librium is e�cient, and convex costs is only a special case of this. This implies

that when costs are convex, late entry is ine�cient, even though the staying

�rms earn positive pro�t in the second period. The reason is that late en-

trants, lacking experience, would have higher costs even if their pro�ts were

zero.

Example 1: Nonconvex Costs and Late Entry

D(p) = 40� 3p
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� = 1

C(q; x) =

8><
>:

q2 + (4� x

100
) for x < 3

q2 + 1

(8=3)x�7
for x � 3

In Example 1, the learning is entirely in the �xed cost. The technology

is nonconvex because the rate of learning increases at x = 3, but it does

satisfy assumption (A5), because decreasing returns set in at a large enough

scale of operation.9

In equilibrium, nS = 10; nE = 0; nL = 4; q1 = 3; q2 = 2; qL = 2, p1 =

10=3, and p2 = 4. These prices clear the market, because

D(p1) = 40� 3(10=3) = 30 = nSq1 + nEqE = 10(3) + 0

and

D(p2) = 40� 3(4) = 28 = nSq2 + nLqL = 10(2) + 4(2):

The prices yield zero pro�ts for the late-entering �rms because qm = 2 and

pm = 4. They yield zero pro�ts overall for the staying �rms because their

pro�ts are

�1 + �2 = [p1q1 � (q21 + 4� x1

100
)] + [p2q2 � (q22 +

1

(8=3)x2�7
)]

= [(10=3)(3)� (32 + 4� 0)] + [(4)(2)� (22 + 1

(8=3)(3)�7
)] = �3 + 3:

Think of this from the point of view of a social planner. In the �rst

period, he decides to introduce just a few �rms, so that all of them can

produce high output and acquire su�cient experience to cross the threshold

for e�ective learning. In the second period, those �rms cut back their output

because further experience is not so valuable, but this means that for the

social planner to satisfy demand he must introduce new �rms.

9The technology violates assumption (A1) because it is not continuous and di�eren-
tiable, but it should be clear that the cost function could be smoothed without doing more
than making the numbers less tidy.
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Example 1 incidentally illustrates a point that will be generalized in

Proposition 6: learning can make prices increase over time, even though costs

are falling. This is because �rms overproduce in the �rst period, incidentally

driving down the price, in order to learn and save on their �xed costs later.

The discussion so far has shown that exit may occur in equilibrium,

which makes the question of market e�ciency especially interesting. A �rm

that exits seems to waste its learning. Can it be socially e�cient that some

�rms never make any use of their �rst-period learning? Surprisingly enough,

Propositions 2 and 3 tell us that the answer is yes. The unique equilibrium

may involve some �rms entering in the �rst period, producing a positive

output and thereby reducing their costs, but then exiting before the second

period. Their learning is wasted. Propositions 2 and 3 say that this is socially

optimal| a social planner would also require that some �rms exit, rather

than direct that there be fewer �rms in period 1. Social optimality therefore

does not imply the kind of \rationalization of industrial production" that

governments favor when they try to consolidate �rms in an industry.

With a little thought, it becomes clear why this is so. Suppose the

marginal cost curve initially slopes steeply upwards at some production level

q0, but that after a �rm acquires experience, its marginal cost curve is closer

to being at. In the �rst period, it would be very expensive to serve market

demand with �rms producing much more than q0. Therefore, the optimal

plan is to have some �rms produce only in the �rst period, to keep output

per �rm low, but to have those �rms exit in the second period, because the

diseconomies of scale then become less severe.

A variable that will be important to the issue of exit is �(x), the ratio of

the minimum e�cient scale to the quantity demanded when the price equals
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minimum average cost. Let us call this the natural concentration, de�ned as

�(x) =
qm(x)

D(pm(x))
; (8)

where

qm(x) = argminqfC(q; x)=qg

and

pm(x) = C(qm(x); x)=qm(x):

When the minimum e�cient scale decreases with learning, the natural con-

centration � is falling in x: loosely speaking, the market is then able to

sustain more �rms when �rms are experienced than when they are not.

Proposition 5 lays out su�cient conditions under which exit does or does

not occur in a competitive equilibrium.

PROPOSITION 5. Let assumptions (A1)-(A7) be true. If �(qm) > �(0),

where qm is the minimum e�cient scale for a �rm with no learning, then there

exists �0 > 0 such that exit occurs in equilibrium for all � 2 (0; �0). On the

other hand, if �(qm) < �(0), there exists �0 > 0 such that no exit occurs in

equilibrium for all � 2 (0; �0).

Proof. See the Appendix.

Firms that overproduce initially in order to learn su�er losses in period 1

which they are able to recover later as they become inframarginal, with lower

costs than potential entrants. Suppose that � = 0, so �rms care only about

�rst-period pro�ts. Then the equilibrium price would be pm(0) = pm in the

�rst period, and each �rm would produce qm(0) = qm. These �rms would

�nd in period 2 that their experience level was x = qm. As we are doing

calculations for discount factors su�ciently near � = 0, it is only this level

of experience that we need consider. If �(qm) < �(0), then the market can
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sustain more �rms with experience than without. If �(qm) > �(0), however,

then once �rms acquire experience, the market cannot sustain as many of

them, and some are forced out in the second period.

Proposition 5 has implications for the important special case in which

the marginal cost of production shifts down uniformly with experience:

C(q; x) = Cv(q) + q�(x) + F (x);

with Cv(q) strictly convex in q; �(x) < 0 and F 0(x) < 0. (Note that this

speci�cation also allows the �xed cost to fall with learning.) The function

qm(x) is nonincreasing in x in this case. As a result, �(x) < �(0) for all

x, and Proposition 5 can be applied. Exit will not occur in equilibrium, if

discounting is su�ciently heavy.10

Suppose, on the other hand, that learning reduces only the �xed cost.

Then the minimum e�cient scale decreases with experience, and so �(x) <

�(0) for all x, yielding Proposition 6.

PROPOSITION 6. If learning reduces only the �xed cost, then in equi-

librium there is no exit, the price rises and each �rm's output falls over time:

nE = 0; p1 < p2, and q1 > q2.

This is the price path illustrated in Example 1. Net marginal cost is

always lower than the marginal cost of any experienced �rm if learning re-

duces �xed cost alone. Thus, if p1 � p2; then q1 > q2, which contradicts the

market equilibrium condition if later entry is impossible. Exit then does not

occur because p1 < p2 � pm. Thus, nE = 0. As we have seen, we cannot

10The proof of the fact that qm(x) is nonincreasing in x is as follows. qm(x) is de�ned by

equating marginal to average cost, i.e. C 0

v(qm(x))+ �(x) = Cv(qm(x))

qm(x)
+ �(x)+ F (x)

qm(x)
: This

yields C 0

v(qm(x))qm(x)�Cv(qm(x)) = F (x): Since Cv is strictly convex, C
0

v(q)q�Cv(q) is
strictly increasing in q. If F is nonincreasing in x, then x1 > x2 implies qm(x1) � qm(x2)
and then �(x) < �(0).
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draw general conclusions about the properties of the price path, because it

depends on the initial costs, the type and intensity of learning, the market

demand, and the discount rate. The same is true for the quantity path of

staying �rms.

Environments in which the equilibriumhas exit are fully if less intuitively

characterized in Proposition 7.

PROPOSITION 7. The following are necessary and su�cient conditions

for an equilibrium to have exit. Let (q�1; q
�

2) be the solution to the following

minimization problem:

z =
Minimum

q1;q2�0
C(q1; 0) + �C(q2; q1)� pmq1

�q2
:

Under assumptions (A1)-(A7), an equilibrium with nE > 0 exists if and only

if

[D(pm)=D(z)] > [q�1=q
�

2]:

Furthermore, if there exists an equilibrium with exit then p2 = z; q1 = q�1; q2 =

q�2; nE = [D(pm) � n�
S
q�1]=qm.

Proof. We know that if exit occurs in equilibrium then p1 = pm . Consider

the following minimization problem:

Minimize
q1;q2�0 (1=�q2)[C(q1; 0) + �C(q2; q1)� pmq1]

It can be checked that there is a unique interior solution, say, (q�1; q
�

2). Let z be

the value of the minimization problem. Then, one can easily check that:

pmq1 + z�q2 � C(q1; 0)� �C(q2; q1) � 0 for all (q1; q2)

pmq
�

1 + z�q�2 � C(q�1; 0)� �C(q�2; q
�

1) = 0:

Thus, the maximum pro�t earned by S-type �rms is exactly zero if p1 = pm and

p2 = z. So, in equilibrium with exit, p2 = z and each �rm produces (q�1; q
�

2).

Let n�
S
= D(z)=q�2. If there is an equilibrium with exit, then n�

S
q�1 < D(pm) and

n�
S
q�2 = D(z), so that

D(pm)=D(z) > q�1=q
�

2: (9)
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Thus, (9) is a necessary condition for an equilibrium with exit. Now, suppose (9)

holds. Let n�
E
= [D(pm)� n�

S
q�1]=qm > 0. It is easy to check that (p1 = pm; p2 =

z; nS = n�
S
; nE = n�

E
> 0; q1 = q�1; q2 = q�2; qE = qm) is an equilibrium. //

Consider any cost function C and the minimization problem indicated in

Proposition 7. By de�nition of the minimum, it must be true that at prices

p1 = pm and p2 = z, the �rm can earn at most zero pro�t by producing

in both periods. Obviously, z < pm. Furthermore , check that the solution

(q�1; q
�

2) to this minimization problem is also a solution to the pro�t maximiza-

tion problem of a staying �rm facing prices (p1 = pm; p2 = z). The numbers

z; q�1, and q�2 depend only on the cost function and have nothing to do with

market demand. The proposition indicates that if q�1 � q�2, there does not

exist any downward sloping market demand function for which exit occurs

in equilibrium. On the other hand, if q�1 < q�2, exit occurs in equilibrium for

any demand function D which satis�es

D(pm)

D(z)
>

q�1
q�2
:

This is a restriction on the behaviour of the demand function at only two

speci�c prices. Thus, for such cost functions the class of demand functions

for which exit occurs in equilibrium is \large." The lower q�1 is relative to q
�

2,

the larger the class of demand functions for which exit occurs.

V. Examples and Implications

Earlier we found two types of equilibria under convex costs: with and

without exit. Under what cost and demand parameters will an equilibrium

with exit arise? Example 2 helps develop some intuition for what may hap-

pen. In it, if the demand function is somewhat inelastic, then after the active

�rms reduce their costs in the �rst period by learning, their potential second-

period output is so great that the market is saturated and some of them must

exit.
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Example 2: Industry Dynamics Under Di�erent Demand Parameters

D(p) = 20� bp

� = 0:9:

C(q; x) = q2(1 + e�x) + 10

Table 1 shows the equilibrium in Example 2 for two di�erent values of

the demand parameter, b.

If b = 1:3, demand is weaker, and more elastic for prices with positive

demand. In this case, there is no exit. All �rms behave identically, producing

higher output in the second period than in the �rst because costs fall enough

with learning. Prices fall for the same reason. Overall pro�ts are zero, but

they are negative in the �rst period and positive in the second. The losses

in the �rst period can be seen as the cost of learning, and the pro�ts in the

second period are quasi-rents on the acquired learning. Even though second-

period pro�ts are positive, no entry occurs, because an entrant would face

higher costs, having never learned how to produce cheaply.

If b = 1, demand is stronger, and less elastic for prices below 20/1.3. In

this case, there is exit. The qualitative features of the staying �rms are the

same as when b = 1:3: output rises, prices fall, and pro�ts go from negative

to positive over time. When b = 1, however, there are also exiting �rms in

the market. These �rms operate only in the �rst period, during which they

have zero pro�ts, instead of the negative pro�ts of the staying �rms. Their

higher pro�ts arise because their outputs are smaller, but that means they

acquire less learning than the staying �rms, and cannot compete pro�tably

in the second period. \Shakeout" has occurred.
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TABLE 1:

THE EQUILIBRIUM IN EXAMPLE 2

Demand parameter b: 1 (strong, inelastic) 1.3 (weak, elastic)

Type of equilibrium Exit No Exit

Prices (p1; p2) 8.94. 6.63 8.76, 6.78

Industry output (Q1; Q2) (11.05, 13.38) (8.60, 11.20)

Number of staying �rms (nS) 4.40 3.60

Number of exiting �rms (nE) 0.18 0

Staying-�rm outputs (q1; q2) (2.42, 3.04) (2.39, 3.11)

Exiting-�rm outputs (qE ; 0) (2.24, 0 ) |

Staying-�rm pro�ts (�1; �2; �S) (-0.068, 0.076, 0 ) (-0.478, 0.531, 0 )

Exiting-�rm pro�ts (�E) 0 |

Learning and Concentration

Does learning-by-doing increase concentration? In an imperfectly com-

petitive context, and without any learning in �xed costs, Dasgupta & Stiglitz

(1988, p. 247) say that, \... �rm-speci�c learning encourages the growth of in-

dustrial concentration... Strong learning possibilities, coupled with vigorous

competition among rivals, ensures that history matters..." Yet Lieberman

(1982, p. 886) could �nd no systematic relation between learning by doing

and industry concentration.

We have already found that history matters, even without the Dasgupta-

Stiglitz assumption of initial asymmetries, but Example 3 will show that the

possibility of learning by doing can either increase or reduce concentration,

depending on the particular industry. Empirical predictions must take into

account the type of learning, not just its presence.
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Example 3: Industry Concentration

D(p) = 1=p

� = 0:9:

C(q; x) = q2(x+ 1)���variable + (x+ 1)���fixed;

where � represents the speed of learning, for 0 < � < 1, and �variable

and �fixed each take the value 0 or 1 to represent whether learning occurs in

variable costs or �xed costs.

Let us denote as case (a) the case of learning in variable costs alone,

where �variable = 1 and �fixed = 0. Let us denote as case (b) the case of

learning in �xed costs alone, where �variable = 0 and �fixed = 1.

In both cases (a) and (b), if � = 0 there is no learning. The cost function

reduces to C(q; x) = q2+1 and the equilibrium number of �rms is n = 0:5. As

� increases, learning-by-doing becomes stronger. The di�erence between the

two cost functions is that in (a) learning a�ects only marginal cost, whereas

in (b) it only a�ects the �xed cost.

Although n = 0:5 when � = 0, when � = 0:5, the number of �rms is

0.469 in case (a) and 0.553 in case (b). Since �rms behave identically in

this equilibrium, if learning inuences mainly the marginal cost, it results in

fewer and bigger �rms, but if it reduces mainly the �xed cost it results in

more and smaller �rms. These are the results one would expect from basic

price theory.

Further, as the speed of learning increases, industry concentration in-

creases in case (a) and decreases in case (b). Finally, in both cases, consumers

are enjoying lower prices as the speed of learning increases. The number of

�rms is greater in an industry with learning on �xed cost alone, however,

than in an industry with no learning possibilities. Given that p2 < pm; and
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that p2 equals marginal cost (the same for all experience levels), we have that

q2 < qm. Hence, because no �rm exits, the number of �rms in the industry

is n = D(p2)=q2 > D(pm)=qm, which is the number of �rms in an industry

with no learning possibilities.

Antitrust authorities may learn an additional lesson from this model.

Consider the following scenario, which is possible for a wide range of param-

eters. In the �rst period, big �rms and small �rms operate and charge high

prices. In the second period, the big �rms all reduce their prices, the small

�rms go out of business, unable to compete, and the big �rms start earning

strictly positive pro�ts. An antitrust authority might look at this and infer

predatory pricing. That is wrong; the big �rms earn zero pro�ts viewed ex

ante, and the price drop is not strategic, but a consequence of falling costs,

and the exit of the small �rms is socially optimal.

VI. Concluding Remarks

When so much of the teaching that microeconomic theorists do involves

perfectly competitive partial equilibrium, it is curious that so much of our

research has focussed on imperfect competition. Perfectly competitive partial

equilibrium is by no means a closed subject, and there is more to be learned

even about the models we teach our beginning students and use in everyday

analysis. In particular, we still need a theory of endogenous market structure.

Why do �rms in an industry behave di�erently at di�erent points in its

history, and why at any one time is heterogenous behavior observed?

One line of research, exempli�ed by Hopenhayn (1992, 1993), looks at

the evolution of an industry in which �rms encounter heterogeneous produc-

tivity shocks. Such shocks can explain why industries evolve over time, and

why so much heterogeneity is observed even when �rms are price takers and
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entry is free. We have come to the same general result that industries evolve

and that �rms behave heterogeneously, but for di�erent reasons: in a fully

deterministic setting, but one with learning.

Our central purpose has been to show that learning and perfect com-

petition are compatible, and that learning has curious implications for the

evolution of a competitive industry. We have shown that in the presence of

convex learning, �rms must enter at the beginning of an industry or never,

and that the number of �rms may decline predictably over time. Firms may

behave di�erently even though they all begin with the same production op-

portunities. Some �rms may enter at a small scale knowing full well that

they will be forced to exit later; and these �rms, in fact, will initially be

the most pro�table. Whether the equilibrium contains such �rms or not, it

will contain other �rms which make losses in the �rst period and pro�ts in

the second. Viewing the situation from the second period, it may appear

oligopolistic, because these �rms will then be earning positive pro�ts, yet

no entry will occur. Viewed from the start of the industry, however, these

�rms are merely reaping the returns to their early investments in learning,

investments which potential entrants have not made.

This model has been quite general in some ways, but it is limited in oth-

ers, and opportunities abound for extending the model. The main limitation

of this model has been its restriction to two periods. By this simpli�cation,

we have been able to employ general cost and demand functions. Allowing

such general functions is important in this context, because industry evo-

lution can be di�erent depending on the curvature of these functions. To

specify linear demand, marginal costs, and learning would be to run the dan-

ger of missing important phenomena, something we conjecture is not true

of limiting the model to two periods. The other limitation of the model is

the assumption of convex costs used for the later propositions; in particular,
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the assumption that diminishing returns in learning and static production

are greater than the e�ect of learning on marginal cost. This is certainly

a reasonable case to consider, but it is not the only case. Convexity was

not needed, however, to prove the existence, uniqueness, and optimality of

equilibrium prices. Moreover, it is remarkable that the industry dynamics of

entry and output are so rich even under convex costs. If the cost functions

were less constrained, we would of course expect even more surprising results

to be possible.

We have also shown that the competitive equilibrium is socially optimal.

Learning does not necessarily destroy this conclusion of basic price theory.

Even if the equilibrium involves some �rms exiting early and not making use

of the learning they acquired in the �rst period, this is socially optimal. This

contrasts sharply with learning models which assume that marginal cost is

constant in current output, because in those models the social planner would

specify that the industry be a monopoly. Here, using standard U-shaped cost

curves, monopoly is not optimal and no intervention is needed.
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Appendix: Proofs ( The full proofs are available in the technical version of this

paper, Petrakis, Rasmusen & Roy (1994), from Erasmuse@indiana.edu, or from

the World Wide Web site,

http://www.indiana.edu/�busecon/lrning.prf. )

Proof Outline for Propositions 2 and 3. Consider the social planner's problem

(SPP) de�ned in the main text. The problem can be decomposed into two stages:

(i) For any vector of total output to be produced by di�erent S,E and L

type �rms, the social planner decides on the minimum total cost of producing this

vector by choosing the measure of active �rms and their output.

(ii) The social surplus from any total output vector can be written as the area

under the inverse demand curve and the social cost corresponding to that output,

where the social cost function is de�ned in stage (i).

One can use a result from Aumann and Perles (1965) to show existence and

characterize the social cost minimization problem in stage (i). The minimand in

this problem is not necessarily convex (unless we assume [A7]) and there need

not be a unique solution. Using the Lyapunov-Richter theorem, however, one can

convexify the social cost possibility set generated by using a continuum of �rms

even though the individual �rm's cost function is not necessarily convex. The

social cost function (the value of the minimization problem) is therefore convex and

di�erentiable. This makes the problem in stage (ii) a strictly concave maximization

problem with a di�erentiable maximand.

Using a set of arguments based on the fact that P (Q)! 0 as Q! +1 and

that the social marginal cost of output is bounded above zero, we can show that

there exists a solution to the problem in stage (ii). As the maximand is strictly

concave, the solution is unique (in terms of total output produced by di�erent types

of �rms). The way the production of this output vector is organized depends on

the cost minimization problem of stage (i). The inverse demand function generates

a price in each period such that demand is equal to total output. The �rst order

conditions for the social planner's maximization problem show that the price in

each period is equal to the social marginal cost of production if a positive quantity

is produced and the price is no greater than social marginal cost otherwise. The

social marginal cost (for each of the types E,S and L) is the Lagrangean multiplier

for the appropriate social cost minimization problem in stage (i). One can show

that in any solution to the social cost minimization problem, each �rm produces

output that maximizes its pro�t if the Lagrangean multipliers are interpreted as
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prices. Furthermore, such pro�t is zero if a positive quantity is produced and never

exceeds zero. One can then establish that every solution to the SPP is sustainable

as a competitive equilibrium. Also, the way the total output vector is produced in

equilibrium can be shown to minimize social cost. Using the concavity of the social

surplus in problem (ii) and the �rst order conditions of pro�t maximization, one

can directly check that the competitive allocation indeed satis�es all the conditions

of social optimality. Hence, a production plan is socially optimal if and only if it

is sustainable as a competitive equilibrium. As there exists a solution to the SPP,

there exists a competitive equilibrium. Furthermore, since the solution to the SPP

is unique in total output produced, the competitive equilibrium is unique in prices.

If, in addition, we assume (A7), the social cost minimization problem in

stage (i) becomes a convex problem, so it has a unique solution in the measure of

active �rms of di�erent types and their output. So the competitive equilibrium

allocation is unique in output and measure of active �rms under (A7), which is

what Proposition 3 says.

Proof of Proposition 4. The �rst part of (a) and (b) follow immediately from

strict concavity of the pro�t function for each type of �rm. (Note that since the

total amount (Q1; Q2) produced by all S-type �rms is always strictly positive,

(q�1; q
�

2) >> 0.) The second part of (b) results from Proposition 1, because the

negative �rst-period pro�ts of the staying �rms result from their high production

for the sake of learning. It remains to show that nL = 0 for part (c).

Suppose that nL > 0. Then from Proposition 1, nE = 0 and p2 = pm.

Under (A7), there exists a unique qm which minimizes [C(q; 0)=q] over q � 0. So,

qL(i) = qm and

p2 = pm = C(qm; 0)=qm = Cq(qm; 0): (10)

Furthermore,

D(p2) = D(pm) = nSq
�

2 + nLqm > nSq
�

2: (11)

From �rst order condition of pro�t maximization for �rms which produce in both

periods we have that Cq(q
�

2; q
�

1) = p2 = pm and, therefore (using (A7), (10) and

q�1 > 0)

q�2 � qm: (12)

Next we claim that the following inequality is true:

Cw(q
�

2; q
�

1)q
�

1 + Cq(q
�

2; q
�

1)q
�

2 � C(q�2; q
�

1) � 0: (13)
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By convexity of C on R2
+,

C(qm; 0)� C(q�2; q
�

1) � Cq(q
�

2; q
�

1)(qm � q�2) + Cw(q
�

2; q
�

1)(0� q�1)

which implies that Cw(q
�

2; q
�

1)q
�

1+Cq(q
�

2; q
�

1)q
�

2�C(q
�

2; q
�

1) � Cq(q
�

2; q
�

1)qm�C(qm; 0) =

p2qm � C(qm; 0) = [p2 � (C(qm; 0)=qm)] = 0 (using (10) ).

From the �rst order conditions of pro�t maximization for S-type �rms and

the fact that in equilibrium, the discounted sum of pro�ts is zero, we have:

Cq(q
�

1; 0)q
�

1 + �Cw(q
�

2; q
�

1)q
�

1 + �Cq(q
�

2; q
�

1)q
�

2 � C(q�1; 0)� �C(q�2; q
�

1) = 0:

Using (13) in the above equation we have:

Cq(q
�

1; 0)q
�

1 � C(q�1; 0) � 0

which implies that

q�1 � qm (14)

so that, from (12) , we have q�1 � q�2. Thus,

nSq
�

1 � nSq
�

2: (15)

From (11) and (15) we have

D(p2) > nSq
�

2 � nSq
�

1 = D(p1);

and so, p1 > p2 = pm , which violates Proposition 1 of the de�nition of equilibrium.

//

Proof of Proposition 5. We will �rst consider the case where �(qm) > �(0) and

show that Proposition 5 holds.

Suppose not. Then there exists sequence f�tg ! 0 such that for all t, if the

discount factor � = �t, then no exit occurs in equilibrium. Let (nt; p1t; p2t; q1t; q2t)

be the equilibrium (with no exit) corresponding to each �t. Now, the sequences

fpitg; fqitg; i = 1; 2 are all bounded sequences (the prices lie in [0; pm] and the

quantities in [0;K]). There exists a subsequence ft0g of ftg such that the sequences

of prices and quantities described above, converge to (say) (pi�; qi�); i = 1; 2. From

�rst order and zero pro�t conditions, we have that

p1t0 = Cq(q1t0; 0) + �tCx(q2t0; q1t0):

31



p2t0 = Cq(q2t0; q1t0):

[p1t0q1t0 � C(q1t0 ; 0)] + �t[p2t0q2t0 � C(q2t0 ; q1t0)] = 0.

Taking limits as t!1 yields

p�1 = Cq(q
�

1; 0); (16)

p�2 = Cq(q
�

2; q
�

1); (17)

p�1q
�

1 � C(q�1; 0) = 0: (18)

From (16) and (18) we have that

p�1 = pm; q
�

1 = qm: (19)

By the de�nition of equilibrium, it must be true that �rms earn non-negative pro�t

in period 2 so that for all t0; [p2t0q2t0 � C(q2t0; q1t0)] � 0. Taking limits, we have

that

p�2q
�

2 � C(q�2; q
�

1) � 0: (20)

Combining (17) and (20) , we can see that

p�2 � pm(q
�

1); q
�

2 � qm(q
�

1): (21)

Since D(p1t0)=q1t0 = D(p2t0)=q2t0, we have after taking the limit as t0 !1

D(p�1)=q
�

1 = D(p�2)=q
�

2: (22)

From (19) ,
q�1

D(p�1)
=

qm

D(pm)
= �(0) (23)

From (21)
q�2

D(p�2)
�

qm(q
�

1)

D(pm(q�1))
= �(q�1) (24)

But �(0) < �(q�1), as q
�

1 = qm: Thus, (23) and (24) contradict (22).

Let us now turn to the case where �(qm) < �(0). Suppose Proposition 5 is false

in this case. Then there exists a sequence f�ig ! 0 such that exit occurs in equilib-

rium for all i. Let (p1i; p2i; q1i; q2i; ni) be the associated equilibrium prices, outputs

and numbers of staying �rms. Then p1i = pm. Note that f(p1i; p2i; q1i; q2i)g is a

bounded sequence, converging to, say f(p1; p2; q1; q2)g. Abusing notation, let this

be the convergent subsequence itself. Observe that

p1i = pm = Cq(q1i; 0) + �iCx(q2i; q1i):
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Since Cx(q2i; q1i) stays bounded as i!1, we have p2 = pm(q1) = pm(qm). (Note

that pm(x) is continuous in x.) Observe that p2i = Cq(q2i; q1i) and so, taking

the limit, we have p2 = Cq(q2; q1) = Cq(q2; qm). Since p2 = pm(qm), we have

q2 = qm(qm). Lastly, note that for each i,

D(p1i)

q1i
� ni =

D(p2i)

q2i
;

so that taking the limit we have

D(pm)

qm
�

D(pm(qm))

qm(qm)
;

which is to say, �(0) � �(qm), a contradiction. //
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