Eric Rasmusen
November 30, 2022

Why 0.9999 ... Equals 1.0000...

In the Tth-grade math class I teach, when we discussed closed and open intervals
I stumbled a bit when it came to talking about 0.99999... possibly being the edge
of an open interval. I told the students that for technical reasons we can’t say that,
and 0.99999... = 1, but to explain why would be too hard. Job Currell found out
why from his brother Isaac, and we talked about it in class, which was good, but I
thought I'd better write up a handout to explain this weirdness. It’s something I'd
never heard of myself before I was in my 50’s, when Professor Christopher Connell
told me about it. That handout became this Substack article.

Theorem 1: 0.999... = 1.
Proof. Define the number zogl as zogl = % = 0.3333... . (Re-
member, “=" means “equals by definition”, whereas “=" means

“happens to equal”.) Three times zogl equals one, right?— be-
cause 3 - % = 1.
Thus, using the 0.3333... way to write zogl, three times zogl
equals 3-0.3333...=1.
But
3-0.3333...=0.999...

Therefore, it must be that 0.999... =1. Q.E.D.

I chose the name zogl for the variable for 0.999...
in honor of Zog I, King of Albania from 1928 to 1939,
when Italy conquered his country in World War II. He
was born Ahmet Muhtar Zogolli, but changed his name
to Zog. He was a favorite of my college debating club,
and, in fact, when we were close to electing a chairman
whose was a fine fellow but lacked humility, we instead
elected King Zog and elected him as merely the Acting

Chairman.

Mathematicians and math teachers have thought a

lot about .999.. ., as you can see from the Wikipedia ar-
ticle at https://en.wikipedia.org/wiki/0.999.... That ar-
ticle seems to me to make it unnecessarily complicated.
I don’t like its Archimidean Principle proofs based on the number line and finding
a least upper bound. I don’t see why making the least upper bound 1 matters to

0.999. .., which it seems to me could be *less* than the least upper bound when
1

the argument assumes that it *is* the least upper bound. I think that proof is

assuming its answer, by defining 0.999... in a certain way.

I don’t see what’s nonrigorous about the proof I gave of Theorem 1. It’s the only
way to make our ordinary rules of arithmetic work for 0.999. .., a pretty convincing
reason to accept that 0.999... = 1. Whenever we work with infinity in math, we
have to be careful, because it’s not a genuine number, it’s shorthand for “and then
keep going with whatever you're doing forever”. We don’t say that 4/0 equals
infinity, we just leave 4/0 undefined, because if we say that 4/0 = infinity, and 5/0
= infinity too, we end up having to say that 4 = 5 if we follow the ordinary rules
of arithmetic. We can save arithmetic by saying that 0.999... = 1. It’s weird, but
that’s because we think of 0.999... as a genuine number and it really is not since
it’s built using the idea of infinity. We either have to say that 0.999. .. is undefined,
like 4/0, or define it to equal 1, as Theorem 1 does. What Theorem 1 is doing is
assuming implicitly— that is, assuming without coming out and saying it is making
that assumption— that we want to define and can define 0.999. .. in such a way that

arithmetic works on it.

Another way to think about 0.999... is not as its own number but as another
way to write “1”, just as zogl was another way to write 0.333. .. If you think about
it as a separate number, you will get all mixed up because there’s no way to make

it its own number without wrecking arithmetic.

Also, if you just think of it as another way to write “one”, you can make a good
joke:

Question: How many mathematicians does it take to screw in a lightbulb?
Answer: 0.999. ..

Here’s another way to think about it. The object “0.999...” is an infinite
series, not a number. That’s because what our dot-dot-dot notation really means
is:

209=0.999... =0+9-%+9 155+9 1555 + -

This is easier to see as a computer program. Let’s do it in Python. First,
here is hard version of the code to print 0.999. .. to 20 places.! Before, we defined
zogl = .333.... Now let’s define plain zog as zog = .999.. ..

#Python 3 code to generate increasingly accurate printouts of 0.99999...
#Eric Rasmusen, erasmuse61@gmail.com, November 28, 2022.

#This is the full version. It woul be even better with a plot of the values, but I don’t have time.
import decimal as d #For the number of decimal places, the precision level.

#Now we will initialize some values.

d.getcontext() .prec = 64 #Sets decimal places you get displayed from d.Decimal()

end =20 #end must be 64 or smaller, or Python can’t handle it.

estimate = d.Decimal(0) #Convert our starting value of O this so it will display lots of decimal places

for item in range(l,end+1):
estimate = estimate + 9*d.Decimal(10**(-item))
estimate = round(estimate, item)

#The computer makes tiny errors because it computes in base 2, not 10.

print("Decimal places:",item, " estimate:", estimate)
print (" \n")
print ("Our final value for approximating zog is", estimate)
print (n____ _n)

The output looks like this:

Decimal places: 1 estimate: 0.9

Decimal places: 2 estimate: 0.99

Decimal places: 3 estimate: 0.999

Decimal places: 4 estimate: 0.9999

Decimal places: 5 estimate: 0.99999

Decimal places: 6 estimate: 0.999999

Decimal places: 7 estimate: 0.9999999

Decimal places: 8 estimate: 0.99999999

Decimal places: 9 estimate: 0.999999999

Decimal places: 10 estimate: 0.9999999999

Decimal places: 11 estimate: 0.99999999999

Decimal places: 12 estimate: 0.999999999999
Decimal places: 13 estimate: 0.9999999999999
Decimal places: 14 estimate: 0.99999999999999
Decimal places: 15 estimate: 0.999999999999999
Decimal places: 16 estimate: 0.9999999999999999
Decimal places: 17 estimate: 0.99999999999999999
Decimal places: 18 estimate: 0.999999999999999999
Decimal places: 19 estimate: 0.9999999999999999999
Decimal places: 20 estimate: 0.99999999999999999999

Our final value for approximating zog is 0.99999999999999999999

You can make it run by copying and pasting this code into https://www.cco/en/python-

compiler.

That code has bells and whistles, so don’t read it unless you like coding. The

basics are in this stripped-down version:?
end =20
estimate = 0
for item in range(1l,end+1):
estimate = estimate + 9%10** (—item)
print("Decimal places:",item, " estimate:", estimate)

print("Our final value for approximating zog is", estimate)

The output looks like this:

Decimal places: 1 estimate: 0.9

Decimal places: 2 estimate: 0.99

Decimal places: 3 estimate: 0.999

Decimal places: 4 estimate: 0.9999

Decimal places: 5 estimate: 0.99999

Decimal places: 6 estimate: 0.9999990000000001
Decimal places: 7 estimate: 0.9999999

Decimal places: 8 estimate: 0.9999999900000001
Decimal places: 9 estimate: 0.999999999
Decimal places: 10 estimate: 0.9999999999
Decimal places: 11 estimate: 0.99999999999
Decimal places: 12 estimate: 0.999999999999
Decimal places: 13 estimate: 0.9999999999999
Decimal places: 14 estimate: 0.99999999999999
Decimal places: 15 estimate: 0.999999999999999
Decimal places: 16 estimate: 0.9999999999999999
Decimal places: 17 estimate: 1.0

Decimal places: 18 estimate: 1.0

Decimal places: 19 estimate: 1.0

Decimal places: 20 estimate: 1.0

Our final value for approximating zog is 1.0

Let’s go over the logic of what the computer is doing. For the moment, ignore
the strange things that happen after 5 decimal places using the stripped-down code.

You can get the logic from the first five decimal places. First, we set end = 20, to

2You can make it run by copying and pasting this code into https://www.cco/en/python-

compiler.

do this for 20 decimal places (but we could change that to 5 or 40 easily). Then we

set estimate = 0, just to get started. Then comes the line
for item in range(1l,end+1):

What this says is for the computer to get ready to do something for all the
numbers between 1 and end, inclusive., which means from 1 to 20. The colon
means " And now comes what the computer is supposed to do, in the indented next

lines of the program”. So we need to look at those next lines. First comes
estimate = estimate + 9% 10%* (~item)

That is the “work line” of the program. It says to change the value of estimate
to equal whatever the old level of estimate is— which is estimate = 0 at the start—
and then add 9(10~%¢™ using the current value of item. The first number assigned
to item was 1, so this says the new value of item is going to be 0 + 9(10~!, which

is 9 - .1, so now estimate = .9.

Python doesn’t print out any results unless you tell it to (this saves computing
time and space when you don’t want to print every single number calculated). So

the next line tells the computer to print something:

print("Decimal places:",item, estimate:", estimate)

The print line tells the computer to print the words “Decimal places:”, followed
by the value of item, which is 1, followed by the spaces and word “ estimate”,
followed by the value of estimate, which is .9. So it prints that, and we see it as
the first line of output,

Decimal places: 1 estimate: 0.9

Those two lines, the work line and the print line, are the only two that are
indented, so the computer then goes back and does everything again in a loop, this
time using item = 2 instead of item = 1. This time the old value of estimate is .9,
and we calculate the new one as estimate = .9 +9 - 1072 which equals .9 + 9 - .01,
so we get estimate = .9 4+ .09 = .99. And the print line prints out using item = 2
and estimate = .99, giving us the second line of the output,

Decimal places: 2 estimate: 0.99

Then the computer goes back again and uses item = 3 and an old estimate of
.99 to get estimate = .99 +9(103 = .99 + .009 = .999 and prints out those values

to give the third line of output. And it keeps going all the way up to the last value

of item that we specified, which was item = end = 20.

One of my points in going through all this is to show you how to use do-loops
in Python coding. More important, though is that this shows that zog is a process,
as much as a number. When we write .999. .., we are talking about the process of
adding 9’s forever. It is like setting end to equal 103!, which I think would cause
the computer to go on till Resurrection Day, or, for you heathens, till the sun burns

out (maybe I'm wrong, in which case try 1031%°; infinity means keep going forever).

Now T’ll explain why the code produces peculiar results at the 6th decimal
places. What happens there is that the computer prints out

Decimal places: 6 estimate: 0.9999990000000001

not what we expected, which was

Decimal places: 6 estimate: 0.999999

What’s going on? The problem is with how computers do arithmetic. Comput-
ers are “digital”, but they don’t use base-10 numbers, they use base-2. When you
tell a computer to calculate 1072, it has to convert 10 into base-2, which converts
it to 1010 since 10 = 23 4+ 0 + 2! + 0. Then it does the calculations. If it’s a big
calculation, there’s going to be some rounding error. In base-10, 1/3 is .33333.. .,
so it needs rounding. In base-2, 1/10 is .0001001100110011 .. ., so it needs rounding
too. That’s why the computer made a mistake, and was off by 0.0000000000000001
from the right answer. With 7 decimal places, the rounding errors cancelled out.
With 8 decimal places, they didn’t. With 9 decimal places they did again, and
everything was fine up through 16 decimal places. At 17 decimal places, though,
we get 1.0 instead of 0.99999999999999999.

The extra complexity in the longer version of the Python program adds extra
precision in the calculations and the printout. We can go up to 64 decimal places,

so it’s no use setting end any bigger.

So much for Python. Let’s now go back to proving that .999... = 1. This
time I'll prove it another way. We proved it as Theorem 1 before. I'll restate it
as Theorem 2, even though it’s really the same as Theorem 1, just with a different

proof.

Theorem 2. 0.999... =
Proof. Let’s define zog as:

zog = 0.999... (1)
Notice that
zo9 = 9-(.14.01+.001+.0001+...) (2)
o. (L, L Lo 1
zog = — + — —_— ...

g 10 100 1,000 10,000
= 0. L + L + (3)

z0g = 102 08 T1r T
zog = 9- Z (4)

Now let’s split up zog into two parts from equation (3):

oL 4ot +i+i+
10 102 7103 T 104 T
zog = 949 = i—i-i—i-i—i-
g = 10) \10t T102 T108 T

o+ (1) (S g

zog

zog

But remember that equation (4) told us that zog = 9-3)/7 5.

Inserting this into equation (5) we get:

1
zog = .9+ Iih zog
Thus,
L =9
zog 0 zog = .
9 9
= s00 = —
0 10
zog = 1 (6)
Since our definition in equation (1) says that zog = .999. .., equa-

tion (6) can be rewritte as
0999... =1
Q.E.D.

So we’ve shown that .999... is not a genuine number, just a strange way to
write 1.0. My student Job Currell brought up that .3333. .. is not a genuine number
either, though we think of it as equalling 1/3. It is, rather a process, or a label.
1/3 ~ .33 and 1/3 ~ .333333, but all we have is an approximation that gets better
and better, closer and closer to 1/3. Using base-10 numbers, we can’t have an exact

representation of 1/3, because 10 doesn’t divide into 3’s evenly.

Infinity really means “keep going with what you’re doing forever,” where that
“what you’re doing” might be counting to bigger numbers or might be approxi-
mating more exactly or might be continuing to do a division problem to more and
more digits or might be drawing a straight line longer and longer. So infinity has
more of the flavor of a verb than a noun. Jonathan Swift wrote Gulliver’s Travels.
From Jonathan Swift’s poem, ”On Poetry: A Rapsody” (1733):

The Vermin only teaze and pinch

Their Foes superior by an Inch.

So, Nat’ralists observe, a Flea

Hath smaller Fleas that on him prey,
And these have smaller yet to bite ’em,
And so proceed ad infinitum:

Thus ev’ry Poet, in his Kind

Is bit by him that comes behind.

More succinctly, from August De Morgan’s poem, “Siphonaptera” (1872):

Great fleas have little fleas upon their backs to bite ’em,

And little fleas have lesser fleas, and so ad infinitum.

De Morgan was a mathematician, and in logic De Morgan’s Laws are named
after him. On both poems, see the Wikipedia article. Note also that even bacteria
get infected by viruses, and there are 103! of these “bacteriophages” on earth, even
bigger than Avogadro’s number (6210%%) and more than of all other organisms

combined (including bacteria)— by number, though maybe not by weight.

This is why you never get closer to infinity when you’re counting— the process

can continue no matter where you have gotten to. From the hymn Amazing Grace:

When we’ve been there ten thousand years,
Bright shining as the sun,
We’ve no less days to sing God’s praise

Than when we’d first begun.

Zeno’s Paradox is worth thinking about in this connection, as USA Today sabre-
metrician and Central-Time-Zone-for-Indiana advocate Jeff Sagarin pointed out to
me at lunch. Zeno of Elea (490-430 BC) told the story of Achilles and the Tortoise,
who are in a race to a finish line 100 yards away. The Tortoise gets a 10-yard
head start. In the first second, Achilles goes 10 yards, catching up. The Tortoise,
however, has gone 1 yard by then, to the 11-yard mark, so it is still ahead. Achilles
then runs up to the 11-yard mark. By then, though, the Tortoise has made it to
the 11.1-yard mark and is still ahead. So Achilles keeps going to 11.1. But by then
the Tortoise has made it to 11.11 and is still ahead. So how can Achilles ever catch
up to the Tortoise?3

To solve the paradox, think back to zog as a sum. Equation (2) wrote zog as
1

0
z0g =9+ (14.01+.001+.0001+...)=9-> 5
=1

I glossed over it before, but this means zog is the sum of an infinite number
of numbers. If you add an infinite number of numbers, don’t get you an infinite
result? After all, 1+1+ 1+ ... = oo0. If you keep adding ones, it really adds up.
But we showed that zog = 1, so we have a paradox— logical reasoning that reaches

two contradictory answers.

The summation paradox is solved by noticing that the zog sum isn’t like adding
one plus one forever. The big difference is that in the zog sum we’re adding smaller
and smaller numbers as we go along. First we add .1, then .001, then .0001, and so
forth. The rate at which the numbers are getting smaller is a faster rate than the
rate at which we're adding them. Thus, the sum is growing more and more slowly,
and though it never grinds to a halt, the sum never becomes infinite. In fact, it
flattens out at 1, which is why zog = 1.

Now we can go back to Zeno’s Paradox. The problem Achilles faces is how to
overcome an infinite series of head starts that the Tortoise gets. We can measure
the amount the Tortoise is ahead either in yards or in seconds. Either way, it’s not
an infinite amount, because the sum is made up of smaller and smaller additions, so
it converges. Achilles does have an infinite number of distances he has to catch up
to— but that infinite number of distances is a finite distance! Thus, he has plenty

of time to catch up past that infinite sum. He will win after all.

3My student Elijah Magnus pointed out that Zeno’s Paradox is retold in the context of
a mad scientist in a wheelchair in The Mysterious Benedict Society: Mr. Benedict’s Book
of Perplexring Puzzles, FElusive Enigmas, and Curious Conundrums by Trenton Lee Stuart,
http://antinode.info/complaints/mbs.html (2011). In class, I had Job Achilles and Elijah Tor-
toise act the paradox out. In an earlier draft I said it was Liam Tucker who brought up the book,

but Liam has corrected me.

10

Well, this is a lot to absorb. You should probably read it over a few times. I
hope I’ve made it interesting enough to do that. It’s worth it. You can rest satisfied
that if you understand this article, you are well-poised to understand a lot of pretty

advanced mathematics— not an infinite amount, but a lot.

