November 18, 2021
Cedars Math
Mr. Rasmusen

Proof That the Square Root of Two Is Irrational

Definition 1: A prime number is a whole number greater than 1 that is evenly divisible only by itself and 1. Examples: 2, 3, and 5, but not 1,4, and 6.

Definition 2: A number's factors are the whole numbers by which it is evenly divisible. Example: The factors of 12 are $1,12,2,6,3$, and 4 .

Definition 3: The prime factors of a number are the factors that are prime numbers. Example: The prime factors of 12 are 2 and 3 .

Definition 4: The prime factorization of a number is how it is formed by multiplying its prime factors. Example: The prime factorization of 12 is $2 \cdot 2 \cdot 3$, or equivalently, $2^{2} \cdot 3$.

Definition 5: A whole number is even if one of its prime factors is 2 . If it is not even it is odd. Example: Twelve is even because its prime factors are 2 and 3. Fifteen is odd because its prime factors are 3 and 5 .

Definition 6: A lemma is a claim that is true but is interesting mainly for proving some other claim.

Definition 7: A rational number is a number that can be written as a fraction. If a number is not rational, it is irrational. Example: 3.5 is a rational number because it can be written as $7 / 2$; π is irrational because it cannot be written as a fraction a / b for any whole numbers a and b.

Definition 8: Two mathematical statements are equivalent if they say the same thing. Example: The ratio $2: 1$ is equivalent to the ratio 2 to 1 .

Lemma 1a: If X is even, so is x^{2}. Only if x is even is x^{2} also even.
Lemma 1b: If and only if x is even, so is x^{2}.
Lemmas 1 and 2 are equivalent.
Proof: $x^{2}=x \cdot x$.
If x has the prime factors $m, n, \ldots q$, then $x \cdot x$ will have the same prime factors, just with double the exponents in the prime factorization.
(i) If x is even, 2 is one of its prime factors.

So x^{2} will still have 2 as a prime factor, so it is even also.
(ii) If x isn't even, it's odd.

If x is odd, it does NOT have 2 as a prime factor.
Thus, x^{2}, with the same prime factors as x, won't have 2 as a prime factor.
(iii) So if x is even, x^{2} is also, but if x isn't even, x^{2} isn't either.
Q.E.D.

Theorem 1: The square root of 2 is irrational.
Proof. Suppose not.
Then there is some ratio a / b such that the fraction $a / b=\sqrt{2}$, where a / b is the fraction reduced as far as possible.
In that case, $a^{2} / b^{2}=2$, since that just squares both sides.
Then, $a^{2}=2 b^{2}$, since that just multiplies both sides by b^{2}.
So a^{2} is even.
By Lemma 1, since a^{2} is even, so is a, since only an even number can be squared to get an even number.
That means we can write $a=2 k$, for some number k.
Then, $a^{2}=(2 k)^{2}=2 \cdot k \cdot 2 \cdot k=4 k^{2}$.
Since $a^{2}=2 b^{2}$, that means $4 k^{2}=2 b^{2}$.
Then dividing both sides by two gives us $2 k^{2}=b^{2}$.
So b^{2} is even.
By Lemma 1 , since b^{2} is even, so is b, just like a was.
But then a / b isn't the reduced fraction, since it has a factor of 2 on both top and bottom.
So it can't be that $\sqrt{2}=a / b$, reduced, for whole numbers a and b.
So $\sqrt{2}$ is irrational.
Q.E.D.

