How to Do a Proof

A proof is a rigorous explanation in math. In a proof, you first write a statement that you are going to prove. Then you go step by step to prove every part of it. For example, suppose we want to prove that $2 *[(2+10) / 4+8-4]=14$.

Proposition 1: $2 *[(2+10) / 4+8-4]=14$.
The left-hand-side of the equation in the proposition can be rewritten as $2 *[12 / 4+8-4]$ by adding the 2 and the 10 . In turn, this can be rewritten as $2^{*}[3+4]$ by by dividing 12 by 4 . Next, we can rewrite it as $2^{*}(7)$ by adding 3 to 4 . This equals $2^{*} 7$, which in turn is equal to 14 . Quod erat demonstrandum.
"Quod erat demonstrandum" means "Which was to be shown" in Latin, and is put at the end of proofs, sometimes abbreviated to "Q.E.D."

Proposition 1 is just a math problem. Usually proofs are for more general statements. Proposition 2 is an example.

Proposition 2: $x^{2} * x^{4}=x^{6}$ for any number x.
Proof: $x^{2}=x * x$.
$x^{4}=x * x * x * x$
Thus, $x^{2} * x^{4}=(x * x)(x * x * x * x)=x * x * x * x * x * x$ by the associative property, and equals $x * x * x * x * x * x=x^{6}$. Q.E.D.

We can make Proposition 2 more general:
Proposition 3: $x^{a} * x^{b}=x^{a+b}$ for any number x and non-negative whole numbers a and b.
Proof: $x^{a}=1 * x * x \ldots$ with x repeated a times on the right-hand-side (so $x^{0}=1$ and $x^{1}=x$). The same is true for x^{b} except x is repeated b times on the right-hand-side.
Thus, $x^{a} * x^{b}$ multiplies $1 * x * x \ldots$ with x repeated a times by $1 * x * x \ldots$ with x repeated b times. That means, by the associative property, that $x^{a} * x^{b}=1 * x * x \ldots$ with x repeated $(a+b)$ times, which equals x^{a+b}. Q.E.D.

We could make Proposition 3 even more general by allowing a and b to be negative, but that would require a more complicated proof. Let's move on to different topic:what numbers can be divided evenly.

Proposition 4: If and only if the last two digits of a number can be divided by four without remainder, so can the entire number.
Proof: We can write the number as $x y z$, where y and z are the last two digits and x is all the other digits. Thus, for $53,678, x=536, y=7$, and $z=8$.
We can break the number $x y z$ up into a hundreds part and a number from 0 to 99 : $x y z=x * 100+y z$. 100 is evenly divisible by 4 because $100 / 4=25$.
Thus, $x * 100$ also evenly divisible $-x * 100 / 4$ equals $25 x$, and x is a whole number.
Thus, $x y z$, which we found equalled $x * 100+y z$ is evenly divisible by 4 if $y z$ is divisible by 4 . Also, this is true only if $y z$ is divisible by 4 , because if it is not divisible by 4 then $x y z / 4=25 x+y z / 4$ and $y z / 4$ is not a whole number. Q.E.D.

The last proof is harder, but it is the most surprising proposition here.
Proposition 5: If and only if the sum of the digits of a four-digit number can be divided by three without remainder, so can the number itself.
Proof: Call the digits of the number a, b, c, d, so the number is $a b c d$ e.g., 3,523 has $a=3, b=5, c=$ $2, d=3$. It will be true that
$a b c d=a *(1,000)+b *(100)+c *(10)+d$
Thus,
$a b c d=a *(999+1)+b *(99+1)+c *(9+1)+d$
and
$a b c d=a * 999+a+b * 99+b+c * 9+c+d$
and
$a b c d=(a * 999+b * 99+c * 9)+(a+b+c+d)$
We know that 999 and 99 and 9 are divisible even by 3 , so everything in the first set of parentheses is divisible by 3 .
Thus, whether $a b c d$ is divisible by 3 depends on whether $(a+b+c+d)$ is divisible by 3. Quod erat demonstrandum.

It is hard to know how many steps to write out in a proof. Proposition 1 had lots of steps, and it was easy enough that some of them could be combined. Proposition 5 is harder, so having lots of steps make it easier to understand.

