Eric Rasmusen

March 14, 2024

Formulas for π

This list is selected from the Wikipedia article, "List of Formulas involving π ". Some of them I adapted to be $\pi=f(x)$ instead of $x=f(\pi)$ I should really write this all out as eqnarrays.

$$
\begin{gather*}
\pi=\frac{C}{d} \quad \text { (where C is the circumference and } \mathrm{d} \text { is the diameter of a circle.l1) } \\
\pi=\frac{C}{2 r} \quad \text { (where } \mathrm{C} \text { is the circumference and } \mathrm{r} \text { is the radius of a circle.) } \tag{2}\\
\pi=\frac{A}{r^{2}} \quad \text { (where A is the area and ris the radius of a circle.) } \tag{3}\\
\pi=\frac{A}{\frac{\text { major }}{2} \cdot \frac{\text { minor }}{2}}, \tag{4}
\end{gather*}
$$

where A is the area of an ellipse, major is its major axis, and minor is its minor axis.

$$
\begin{equation*}
\pi=\frac{3}{4} \cdot \frac{V}{r^{3}} \quad \text { (where } \mathrm{V} \text { is the area of a sphere and } \mathrm{r} \text { is its radius.) } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\frac{A}{4 r^{2}} \quad \text { (where } \mathrm{A} \text { is a sphere's surface area and } \mathrm{r} \text { is its radius.) } \tag{6}
\end{equation*}
$$

$\pi=\frac{\sqrt{2 H}}{r^{2}}, \quad$ (where H is the volume and r is the radius of a $3-$ hypersphere in $4-\mathrm{D}$ space.)
$\pi=\frac{\text { Sum }}{N-2} \quad$ (where Sum is the sum of an $\mathrm{N}-$ sided regular convex polygon's angles, in radians.)

$$
\begin{equation*}
\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots\right)_{1} \quad(\text { Leibniz's formula for } \pi) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\pi=2 \sqrt{2}\left(1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\cdots\right) \quad(\text { Newton's formula for } \pi) \tag{10}
\end{equation*}
$$

$\pi=\sum_{k=1}^{\infty} k \frac{2^{k} k!^{2}}{(2 k)!}-3 \quad$ (Euler's series)

$$
\pi=\sqrt[4]{90\left(\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots\right)}
$$

$$
\begin{equation*}
\pi=\sqrt{12\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots\right)} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\sqrt{24\left(\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\frac{1}{8^{2}}+\cdots\right)} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\sqrt{8\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots\right)} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\sqrt[3]{32\left(\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\cdots\right)} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{n+1 / 2} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\sqrt{\sum_{n=-\infty}^{\infty} \frac{1}{(n+1 / 2)^{2}}} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\pi=\sqrt{6\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right)} \quad \text { (from Euler) } \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\pi=4\left(\frac{3}{4} \cdot \frac{5}{4} \cdot \frac{7}{8} \cdot \frac{9}{8} \cdot \frac{11}{12} \cdot \frac{13}{12} \cdots\right) \tag{20}
\end{equation*}
$$

from Euler, where the numerators are the odd primes; each denominator is the multiple of four nearest to the numerator.

$$
\begin{equation*}
\pi=2 \int_{-1}^{1} \sqrt{1-x^{2}} d x \quad \text { (which is to integrate two halves of a unit circle) } \tag{21}
\end{equation*}
$$

and, similarly,

$$
\begin{align*}
& \pi=\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x \text { (which is to integrate two halves of a unit circle) } \tag{22}\\
& \pi=\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x \quad \text { (from the Cauchy density and the Witch of Agnesi.) } \tag{23}
\end{align*}
$$

$$
\begin{gather*}
\text { Since } f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad \text { (the normal density), } \tag{24}\\
\left.1=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \quad \text { (integrating and setting } \sigma=1, \mu=0\right), \text { so } \tag{25}\\
\pi=\begin{array}{r}
\left(\sum_{x=0}^{N} \frac{1}{N} e^{-x^{2} / 2}\right)^{2} \quad\left(\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x\right)^{2} \\
\pi \approx \quad(\text { doubling the sum from } 0 \text { to N) } \\
\pi=\int_{-\infty}^{\infty} \frac{\sin (x)}{x} d x
\end{array} \tag{26}
\end{gather*}
$$

Add the fluid dynamics equation.
Add the Euler identity.
Peter Borwein, The World of Pi website.
Peter Borwein, "The Amazing Number П" (2000).

