## Odd Squares Minus One Are Divisible by Eight

Theorem: Suppose a square's side is an odd number. Then the area of the square minus one is divisible by eight.
Proof: Let the side of the square have length X . Since X is odd, we can write it as $\mathrm{X}=2 \mathrm{~N}+1$ for some number N . What we must show is that $(2 N+1)^{2}-1$ is divisible by 8 .

$$
\begin{align*}
(2 N+1)^{2}-1 & =(2 N+1)(2 N+1)-1 \\
& =(2 N+1)(2 N)+(2 N+1)(1)-1 \\
& =2 N \cdot 2 N+2 N \cdot 1+2 N \cdot 1+1 \cdot 1-1  \tag{2}\\
& =4 N^{2}+2 N+2 N+1-1  \tag{3}\\
& =4 N^{2}+4 N  \tag{4}\\
& =4\left(N^{2}+N\right)  \tag{5}\\
& =4 N(N+1) \tag{6}
\end{align*}
$$

Clearly this is divisible by 4 . But we can show that $N(N+1)$ is even, so $N(N+1)$ is divisible by 2 and the whole thing is divisible by $4 \cdot 2=8$. The reason $N(N+1)$ is even is that either $N$ is even or $(N+1)$ is even, so $N(N+1)$ is an even number multiplies by an odd number. But anything multiplied by an even number is even. So $N(N+1)$ is even, so it is divisible by 2 and $4 N(N+1)$ is divisible by 8. QED.

